О разрешимости линейных дифференциальных операторов на векторных расслоениях над многообразием

Обложка

Цитировать

Полный текст

Аннотация

Установлено необходимое и достаточное условие для замкнутости образа или сюрьективности дифференциального оператора, действующего на гладких сечениях векторных расслоений. Для связных некомпактных многообразий показано, что эти условия выводятся из условий регулярности и свойства единственности продолжения решений. Приведено приложение этих результатов к эллиптическим операторам (точнее, к операторам с сюрьективным главным символом) с аналитическими коэффициентами, к эллиптическим операторам второго порядка на линейных расслоениях с вещественной старшей частью и к оператору Ходжа--Лапласа--де Рама. Показано, что старшая группа когомологий де Рама (соответственно Дольбо) на связном некомпактном гладком (соответственно комплексно-аналитическом) многообразии обнуляется. Для эллиптических операторов доказано, что разрешимость в гладких сечениях влечёт за собой разрешимость в обобщённых сечениях.

Об авторах

М. С. Смирнов

Московский государственный университет имени М.В. Ломоносова;Институт вычислительной математики имени Г.И. Марчука РАН

Автор, ответственный за переписку.
Email: matsmir98@gmail.com
Москва, Россия

Список литературы

  1. Sagraloff B. Normal solvability of linear partial differential operators in $C^\infty(\Omega)$ // Geometrical Approaches to Differential Equations. Lect. Not. in Math. 2006. V. 810. P. 290-305.
  2. Хермандер Л. Анализ линейных дифференциальных операторов. М., 1986.
  3. Duistermaat J.J., H"ormander L. Fourier integral operators. II // Acta Math. 1972. V. 128. № 3-4. P. 183-269.
  4. H"ormander L. Propagation of singularities and semiglobal existence theorems for (pseudo)differential operators of principal type // Ann. of Math. 1978. V. 108 (3). № 2. P. 569-609.
  5. Hounie J. A note on global solvability of vector fields // Proc. Amer. Math. Soc. 1985. V. 94. № 1. P. 61-64.
  6. Rauch J., Wigner D. Global solvability of the Casimir operator // Ann. of Math. 1976. V. 103. № 2. P. 229-236.
  7. Helgason S. Solvability of invariant differential operators on homogeneous manifolds // Centro Internaz. Mat. Estivo. 1975. P. 281-310.
  8. Ara\'ujo G. Regularity and solvability of linear differential operators in Gevrey spaces // Math. Nachr. 2018. V. 291. № 5-6. P. 729-758.
  9. Bunke U., Olbrich M. Gamma-cohomology and the Selberg zeta function // J. Reine Angew. Math. 1995. V. 467. P. 199-219.
  10. Rinehart L. Elliptic operators on non-compact manifolds have closed range // https://arxiv.org/abs/ 2203.07534.
  11. Kazdan J.L. Unique continuation in geometry // Comm. Pure Appl. Math. 1988. V. 41. № 5. P. 667-681.
  12. Grosser M., Kunzinger M., Oberguggenberger M., Steinbauer R. Geometric Theory of Generalized Functions with Applications to General Relativity. Dordrecht, 2001.
  13. Grubb G. Distributions and Operators. New York, 2009.
  14. Шефер Х. Топологические векторные пространства. М., 1971.
  15. Palais R.S. Seminar on the Atiyah-Singer Index Theorem. Princeton, 1965.
  16. Уэллс Р. Дифференциальное исчисление на комплексных многообразиях. М., 1976.
  17. Шубин М.А. Псевдодифференциальные операторы и спектральная теория. М., 2005.
  18. Antoni\'c N., Burazin K. On certain properties of spaces of locally Sobolev functions // Proc. of the Conf. on Appl. Math. and Sci. Comp. Dordrecht, 2005. P. 109-120.
  19. Aronszajn N. A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order // J. Math. Pures. Appl. 1957. V. 36. № 9. P. 235-249.
  20. Munkres J.R. Topology. Upper Saddle River, 2000.
  21. Kriegl A., Michor P.W. The Convenient Setting of Global Analysis. Providence, 1997.
  22. Petrowsky I.G. Sur l'analyticit\'e des solutions des syst\'emes d'\'equations diff\'erentielles // Rec. Math. N. S. 1939. V. 5. № 47. P. 3-70.
  23. Форстер О. Римановы поверхности. М., 1980.
  24. Smirnov M. On the rate of polynomial approximations of holomorphic functions on convex compact sets // Complex Anal. Oper. Theory. 2023. V. 17. Art. 129.
  25. Lee J.M. Introduction to Smooth Manifolds. Graduate Texts in Math. V. 218. New York, 2013.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».