Influence of the Magnetic Domain Structure on Polarization Effects in the Mössbauer Spectra of Iron Borate FeBO3 Single Crystals

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The Mössbauer spectra of FeBO3 single crystals are studied at temperatures above and below the magnetic transition point at different orientations of the crystals with respect to the propagation direction of γ rays. To describe the Mössbauer spectra, a theoretical model is developed with allowance for different orientations of magnetic moments in the crystal plane. It is found that the magnetic domain structure in iron borate significantly affects the shape of the Mössbauer spectra and the intensity of resonant transitions. The proposed model may be useful for determining the configuration of the magnetic domain structure of materials from Mössbauer spectroscopy data.

作者简介

N. Snegirev

Shubnikov Institute of Crystallography, Federal Research Center Crystallography and Photonics, Russian Academy of Sciences, 119333, Moscow, Russia

Email: niksnegir@yandex.ru

M. Chuev

Valiev Institute of Physics and Technology, Russian Academy of Sciences, 117218, Moscow, Russia

Email: niksnegir@yandex.ru

I. Lyubutin

Shubnikov Institute of Crystallography, Federal Research Center Crystallography and Photonics, Russian Academy of Sciences, 119333, Moscow, Russia

Email: niksnegir@yandex.ru

S. Starchikov

Shubnikov Institute of Crystallography, Federal Research Center Crystallography and Photonics, Russian Academy of Sciences, 119333, Moscow, Russia

Email: niksnegir@yandex.ru

S. Yagupov

Physics and Technology Institute, Vernadsky Crimean Federal University, 295007, Simferopol, Russia

Email: niksnegir@yandex.ru

M. Strugatskiy

Physics and Technology Institute, Vernadsky Crimean Federal University, 295007, Simferopol, Russia

编辑信件的主要联系方式.
Email: niksnegir@yandex.ru

参考

  1. R. Diehl, W. Jantz, B. I. Nolaeng, and W. Wettling, Curr. Top. Mater. Sci. 11, 242 (1984).
  2. N. I. Snegirev, I. S. Lyubutin, S. V. Yagupov, M. A. Chuev, N. K. Chumakov, O. M. Zhigalina, D. N. Khmelenin, and M. B. Strugatsky, Russ. J. Inorg. Chem. 66, 1217 (2021).
  3. V. E. Zubov, A. D. Kudakov, D. A. Bulatov, M. B. Strugatskii, and S. V. Yagupov, JETP Lett. 116, 394 (2022).
  4. V. E. Zubov, A. D. Kudakov, N. L. Levshin, I. A. Belov, and M. B. Strugatskii, JETP Lett. 105, 706 (2017).
  5. N. I. Snegirev, I. S. Lyubutin, S. V. Yagupov, A. G. Kulikov, V. V. Artemov, Y. A. Mogilenec, and M. B. Strugatsky, JETP Lett. 112, 352 (2020).
  6. N. I. Snegirev, I. S. Lyubutin, A. G. Kulikov, S. V. Yagupov, K. A. Seleznyova, Y. A. Mogilenec, and M. B. Strugatsky, Crystallogr. Reports 65, 596 (2020).
  7. I. S. Lyubutin, N. I. Snegirev, M. A. Chuev, S. S. Starchikov, E. S. Smirnova, M. V. Lyubutina, S. V. Yagupov, M. B. Strugatsky, and O. A. Alekseeva, J. Alloys Compd. 906, 164348 (2022).
  8. E. S. Smirnova, N. I. Snegirev, I. S. Lyubutin, S. S. Starchikov, V. V. Artemov, M. V. Lyubutina, S. V. Yagupov, M. B. Strugatsky, Y. A. Mogilenec, K. A. Seleznyova, and O. A. Alekseeva, Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 76, 1100 (2020).
  9. S. Yagupov, M. Strugatsky, K. Seleznyova, Y. Mogilenec, N. Snegirev, N. V. Marchenkov, A. G. Kulikov, Y. A. Eliovich, K. V. Frolov, Y. L. Ogarkova, and I. S. Lyubutin, Cryst. Growth Des. 18, 7435 (2018).
  10. V. E. Dmitrienko, E. N. Ovchinnikova, S. P. Collins, G. Nisbet, G. Beutier, Y. O. Kvashnin, V. V. Mazurenko, A. I. Lichtenstein, and M. I. Katsnelson, Nat. Phys. 10, 202 (2014).
  11. N. Snegirev, E. Smirnova, I. Lyubutin, A. Kiiamov, S. Starchikov, S. Yagupov, M. Strugatsky, and O. Alekseeva, IEEE Magn. Lett. 13, 1 (2022).
  12. Modern M�ossbauer Spectroscopy, ed. by Y. Yoshida and G. Langouche, Springer, Singapore (2021).
  13. N. N. Greenwood and T. C. Gibb, M�ossbauer Spectroscopy, Springer Netherlands, Dordrecht (1971); doi: 10.1007/978-94-009-5697-1.
  14. S. S. Hanna, J. Heberle, C. Littlejohn, G. J. Perlow, R. S. Preston, and D. H. Vincent, Phys. Rev. Lett. 4, 28 (1960).
  15. R. S. Preston, S. S. Hanna, and J. Heberle, Phys. Rev. 128, 2207 (1962).
  16. U. Gonser, M�ossbauer Spectroscopy II: the Exotic Side of the Method, Springer (Berlin), Heidelberg, N.Y. (1981).
  17. V. S. Shpinel, Resonance of gamma-rays in crystals [in Russian], Nauka, Moscow (1969).
  18. P. Gu�tlich, E. Bill, and A. X. Trautwein, M�ossbauer spectroscopy and transition metal chemistry: Fundamentals and applications, Springer, Berlin, N.Y. (2011); doi: 10.1007/978-3-540-88428-6.
  19. N. Snegirev, Y. Mogilenec, K. Seleznyova, I. Nauhatsky, M. Strugatsky, S. Yagupov, A. Kulikov, D. Zolotov, N. Marchenkov, K. Frolov, and I. Lyubutin, IOP Conf. Ser. Mater. Sci. Eng. 525, 012048 (2019).
  20. M. A. Chuev, J. Phys. Condens. Matter 23, 426003 (2011).
  21. M. A. Chuev, JETP 103, 243 (2006).
  22. V. A. Labushkin, V. G. Lomov, A. A. Faleev, and V. A. Figin, Fiz. Tverd. Tela 22, 1725 (1980).
  23. M. Strugatsky, Isometric Iron Borate Single Crystals: Magnetic and Magnetoacoustic E ects, V. I. Vernadsky Taurida National University, Simferopol (2008).
  24. K. Seleznyova, E. Smirnova, M. Strugatsky, N. Snegirev, S. Yagupov, Y. Mogilenec, E. Maksimova, O. Alekseeva, and I. Lyubutin, J. Magn. Magn. Mater. 560, 169658 (2022).

版权所有 © Российская академия наук, 2023

##common.cookie##