Influence of the Magnetic Domain Structure on Polarization Effects in the Mössbauer Spectra of Iron Borate FeBO3 Single Crystals

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The Mössbauer spectra of FeBO3 single crystals are studied at temperatures above and below the magnetic transition point at different orientations of the crystals with respect to the propagation direction of γ rays. To describe the Mössbauer spectra, a theoretical model is developed with allowance for different orientations of magnetic moments in the crystal plane. It is found that the magnetic domain structure in iron borate significantly affects the shape of the Mössbauer spectra and the intensity of resonant transitions. The proposed model may be useful for determining the configuration of the magnetic domain structure of materials from Mössbauer spectroscopy data.

Sobre autores

N. Snegirev

Shubnikov Institute of Crystallography, Federal Research Center Crystallography and Photonics, Russian Academy of Sciences, 119333, Moscow, Russia

Email: niksnegir@yandex.ru

M. Chuev

Valiev Institute of Physics and Technology, Russian Academy of Sciences, 117218, Moscow, Russia

Email: niksnegir@yandex.ru

I. Lyubutin

Shubnikov Institute of Crystallography, Federal Research Center Crystallography and Photonics, Russian Academy of Sciences, 119333, Moscow, Russia

Email: niksnegir@yandex.ru

S. Starchikov

Shubnikov Institute of Crystallography, Federal Research Center Crystallography and Photonics, Russian Academy of Sciences, 119333, Moscow, Russia

Email: niksnegir@yandex.ru

S. Yagupov

Physics and Technology Institute, Vernadsky Crimean Federal University, 295007, Simferopol, Russia

Email: niksnegir@yandex.ru

M. Strugatskiy

Physics and Technology Institute, Vernadsky Crimean Federal University, 295007, Simferopol, Russia

Autor responsável pela correspondência
Email: niksnegir@yandex.ru

Bibliografia

  1. R. Diehl, W. Jantz, B. I. Nolaeng, and W. Wettling, Curr. Top. Mater. Sci. 11, 242 (1984).
  2. N. I. Snegirev, I. S. Lyubutin, S. V. Yagupov, M. A. Chuev, N. K. Chumakov, O. M. Zhigalina, D. N. Khmelenin, and M. B. Strugatsky, Russ. J. Inorg. Chem. 66, 1217 (2021).
  3. V. E. Zubov, A. D. Kudakov, D. A. Bulatov, M. B. Strugatskii, and S. V. Yagupov, JETP Lett. 116, 394 (2022).
  4. V. E. Zubov, A. D. Kudakov, N. L. Levshin, I. A. Belov, and M. B. Strugatskii, JETP Lett. 105, 706 (2017).
  5. N. I. Snegirev, I. S. Lyubutin, S. V. Yagupov, A. G. Kulikov, V. V. Artemov, Y. A. Mogilenec, and M. B. Strugatsky, JETP Lett. 112, 352 (2020).
  6. N. I. Snegirev, I. S. Lyubutin, A. G. Kulikov, S. V. Yagupov, K. A. Seleznyova, Y. A. Mogilenec, and M. B. Strugatsky, Crystallogr. Reports 65, 596 (2020).
  7. I. S. Lyubutin, N. I. Snegirev, M. A. Chuev, S. S. Starchikov, E. S. Smirnova, M. V. Lyubutina, S. V. Yagupov, M. B. Strugatsky, and O. A. Alekseeva, J. Alloys Compd. 906, 164348 (2022).
  8. E. S. Smirnova, N. I. Snegirev, I. S. Lyubutin, S. S. Starchikov, V. V. Artemov, M. V. Lyubutina, S. V. Yagupov, M. B. Strugatsky, Y. A. Mogilenec, K. A. Seleznyova, and O. A. Alekseeva, Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 76, 1100 (2020).
  9. S. Yagupov, M. Strugatsky, K. Seleznyova, Y. Mogilenec, N. Snegirev, N. V. Marchenkov, A. G. Kulikov, Y. A. Eliovich, K. V. Frolov, Y. L. Ogarkova, and I. S. Lyubutin, Cryst. Growth Des. 18, 7435 (2018).
  10. V. E. Dmitrienko, E. N. Ovchinnikova, S. P. Collins, G. Nisbet, G. Beutier, Y. O. Kvashnin, V. V. Mazurenko, A. I. Lichtenstein, and M. I. Katsnelson, Nat. Phys. 10, 202 (2014).
  11. N. Snegirev, E. Smirnova, I. Lyubutin, A. Kiiamov, S. Starchikov, S. Yagupov, M. Strugatsky, and O. Alekseeva, IEEE Magn. Lett. 13, 1 (2022).
  12. Modern M�ossbauer Spectroscopy, ed. by Y. Yoshida and G. Langouche, Springer, Singapore (2021).
  13. N. N. Greenwood and T. C. Gibb, M�ossbauer Spectroscopy, Springer Netherlands, Dordrecht (1971); doi: 10.1007/978-94-009-5697-1.
  14. S. S. Hanna, J. Heberle, C. Littlejohn, G. J. Perlow, R. S. Preston, and D. H. Vincent, Phys. Rev. Lett. 4, 28 (1960).
  15. R. S. Preston, S. S. Hanna, and J. Heberle, Phys. Rev. 128, 2207 (1962).
  16. U. Gonser, M�ossbauer Spectroscopy II: the Exotic Side of the Method, Springer (Berlin), Heidelberg, N.Y. (1981).
  17. V. S. Shpinel, Resonance of gamma-rays in crystals [in Russian], Nauka, Moscow (1969).
  18. P. Gu�tlich, E. Bill, and A. X. Trautwein, M�ossbauer spectroscopy and transition metal chemistry: Fundamentals and applications, Springer, Berlin, N.Y. (2011); doi: 10.1007/978-3-540-88428-6.
  19. N. Snegirev, Y. Mogilenec, K. Seleznyova, I. Nauhatsky, M. Strugatsky, S. Yagupov, A. Kulikov, D. Zolotov, N. Marchenkov, K. Frolov, and I. Lyubutin, IOP Conf. Ser. Mater. Sci. Eng. 525, 012048 (2019).
  20. M. A. Chuev, J. Phys. Condens. Matter 23, 426003 (2011).
  21. M. A. Chuev, JETP 103, 243 (2006).
  22. V. A. Labushkin, V. G. Lomov, A. A. Faleev, and V. A. Figin, Fiz. Tverd. Tela 22, 1725 (1980).
  23. M. Strugatsky, Isometric Iron Borate Single Crystals: Magnetic and Magnetoacoustic E ects, V. I. Vernadsky Taurida National University, Simferopol (2008).
  24. K. Seleznyova, E. Smirnova, M. Strugatsky, N. Snegirev, S. Yagupov, Y. Mogilenec, E. Maksimova, O. Alekseeva, and I. Lyubutin, J. Magn. Magn. Mater. 560, 169658 (2022).

Declaração de direitos autorais © Российская академия наук, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies