Структурная микромодификация алмаза фемтосекундными лазерными импульсами через оптический контакт с нелинейной сильнорефрактивной иммерсионной средой

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Фемтосекундными лазерными импульсами через оптический контакт с сильнорефрактивной иммерсионной средой из сульфида цинка произведена запись считываемой фотолюминесцентной микрометки в объеме алмаза. Показано влияние сильнорефрактивной иммерсионной среды на положение и размер конфокальной области при считывании люминесцентной микрометки. Установлено, что основным механизмом нелинейного ослабления лазерного излучения в исследуемых материалах является умеренное двухфотонное поглощение, и определены его коэффициенты. Продемонстрирована применимость сульфида цинка как оптически-согласованной сильнорефрактивной иммерсионной среды для лазерной записи и считывания фотолюминесцентной микромаркировки алмаза. После впрессовывания алмаза в пластину сульфида цинка методом высокотемпературной пластической деформации в атмосфере аргона оптическая спектрофотометрия и рентгенофазовый анализ обнаруживают заметное помутнение иммерсионного материала вследствие поверхностного пирогидролиза, частично сохраняющее возможность считывания фотолюминесцентных микрометок.

Об авторах

Е. В Кузьмин

Физический институт им. П.Н.Лебедева РАН

Email: kuzmine@lebedev.ru
Москва, Россия

Г. К Красин

Физический институт им. П.Н.Лебедева РАН

Москва, Россия

Ю. С Гулина

Физический институт им. П.Н.Лебедева РАН

Москва, Россия

П. А Данилов

Физический институт им. П.Н.Лебедева РАН

Москва, Россия

Д. А Помазкин

Физический институт им. П.Н.Лебедева РАН

Москва, Россия

А. В Горевой

Физический институт им. П.Н.Лебедева РАН

Москва, Россия

С. В Кузнецов

Институт общей физики им. А.М.Прохорова РАН

Москва, Россия

В. В Воронов

Институт общей физики им. А.М.Прохорова РАН

Москва, Россия

В. Ю Ковалев

Физический институт им. П.Н.Лебедева РАН

Москва, Россия

С. И Кудряшов

Физический институт им. П.Н.Лебедева РАН

Москва, Россия

А. О Левченко

Физический институт им. П.Н.Лебедева РАН

Москва, Россия

Э. В Караксина

Институт химии высокочистых веществ им. Г. Г.Девятых РАН

Н.Новгород, Россия

В. С Ширяев

Институт химии высокочистых веществ им. Г. Г.Девятых РАН

Н.Новгород, Россия

Список литературы

  1. R. A. Khmelnitsky, O. E. Kovalchuk, Y. S. Gulina, A. A. Nastulyavichus, G. Y. Kriulina, N.Y. Boldyrev, S.I. Kudryashov, A. O. Levchenko, and V. S. Shiryaev, Diam. Relat. Mater. 128, 109278 (2022).
  2. Д. В. Сизмин, Нелинейная оптика, учеб. пособие, изд. СаоФТИ, Саров (2015).
  3. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Phys. Rev. Lett. 7, 118 (1961).
  4. С. А. Ахманов, А. П. Сухоруков, Р. В. Хохлов, Успехи физических наук 93, 1 (1967).
  5. Н. Б. Делоне, Соросовский образовательный журнал 3, 75 (1996).
  6. Н. А. Смирнов, А. О. Левченко, С. В. Кузнецов, А. Б. Егоров, В. В. Шутов, П. А. Данилов, А. А. На-стулявичус, С. И. Кудряшов, А. А. Ионин, Оптика и спектроскопия 131, 2 (2023).
  7. E. W. van Stryland and M. Sheik-Bahae, Proc. SPIE 10291, 488 (1997).
  8. Ю. С. Гулина, Оптика и спектроскопия 130, 4 (2022).
  9. Y. Gulina, J. Zhu, G. Krasin, E. Kuzmin, and S. Kudryashov, Photonics 10(10), 1177 (2023).
  10. Y. Dumeige, F. Treussart, R. Alleaume, T. Gacoin, J.-F. Roch, and P. Grangier, J. Lumin. 109(2), 61 (2004).
  11. Э. В. Караксина, Получение и свойства поликри-сталлического сульфида цинка для ИК оптики, автореферат докт. дисс., Нижний Новгород (2004).

© Российская академия наук, 2024

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах