Редуцированная характеризация перестраиваемых линейно-оптических интегральных схем

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Перестраиваемые линейно-оптические схемы являются важным элементом как классических, так и квантовых информационных технологий. Масштабирование таких схем становится возможным только при переходе к интегральному исполнению, что усложняет их характеризацию из-за невозможности реконструкции каждого элемента по отдельности. Существующие методы характеризации линейнооптических схем требуют многократных измерений фаз матричных элементов передаточной матрицы при различных значениях управляющих параметров, что представляет собой значительные экспериментальные трудности. В данной работе предлагается новый подход: мы демонстрируем, что, измерив лишь коэффициенты пропускания для определенного набора значений управляющих параметров оптической схемы, можно построить математическую модель, способную предсказывать коэффициенты пропускания для произвольных значений параметров. Этот метод успешно апробирован в численном эксперименте на примере перестраиваемого четырехканального интерферометра, реализующего произвольное унитарное преобразование. Предложенный метод открывает новые возможности для более эффективной характеризации и проектирования перестраиваемых линейно-оптических схем.

Об авторах

Л. В. Бигуаа

Центр квантовых технологий, физический факультет МГУ им. М. В. Ломоносова; Физико-технологический институт им. К. А. Валиева РАН

Email: Leon.006w@yandex.ru
Москва, Россия; Москва, Россия

К. Г. Катамадзе

Центр квантовых технологий, физический факультет МГУ им. М. В. Ломоносова; Физико-технологический институт им. К. А. Валиева РАН

Москва, Россия; Москва, Россия

Б. И. Бантыш

Физико-технологический институт им. К. А. Валиева РАН

Москва, Россия

Ю. И. Богданов

Физико-технологический институт им. К. А. Валиева РАН

Москва, Россия

Список литературы

  1. P. Minzioni, C. Lacava, and T. Tanabe, J. Opt. 21, 063001 (2019).
  2. N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg, T. Baehr?Jones, M. L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing, and D. Englund, Optica 5, 1623 (2018).
  3. J. Carolan, C. Harrold, C. Sparrow, E. Martin-Lopez, Science 349, 711 (2015).
  4. H.-S. Zhong, Y. Y. Li, and W. Li, Phys. Rev. Lett. 121, 250505 (2018).
  5. W. Asavanant, Y. Shiozawa, S. Yokoyama, B. Charoensombutamon, H. Emura, R. N. Alexander, S. Takeda, J.-I. Yoshikawa, N. C. Menicucci, H. Yonezawa, and A. Furusawa, Science 366, 373 (2019).
  6. J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, Nature Photon. 14, 273 (2019).
  7. R. Hamerly, L. Bernstein, A. Sludds, and M. Marin, Soljai´c, and D. Englund, Phys. Rev. X 9, 021032 (2019).
  8. G. Wetzstein and, A. Ozcan, S. Gigan, S. Fan, D. R. Englund, M. Soljaˇci´c, C. Denz, D. A. B. Miller, and D. Psaltis, Nature 588, 39 (2020).
  9. H. Zhang, M. Gu, and X. D. Jiang, Nat. Commun. 12, 457 (2021).
  10. S. Rahimi-Keshari, M. A. Broome, R. Fickler, A. Fedrizzi, T. C. Ralph, and A. G. White, Opt. Express 21, 13450 (2012).
  11. K. V. Jacob, E. A. Mirasola, S. Adhikari, and P. J. Dowling, Phys. Rev. A 98, 052327 (2018).
  12. A. Laing and J. L. O’Brien, arXiv:1208.2868 [quantph] (2012).
  13. A. Peruzzo, A. Laing, A. Politi, T. Rudolph, and J. L. O’Brien, Nat. Commun. 2, 1 (2010).
  14. K. G. Katamadze, G. Avosopiants, A. V. Romanova, Y. I. Bogdanov, and S. Kulik, Laser Phys. Lett. 18, 075201 (2021).
  15. J. Carolan, C. Harrold, C. Sparrow et al. (Collaboration), Science 349, 711 (2015).
  16. N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. R. Englund, Nature Photon. 11, 447 (2015).
  17. C. Sparrow, E. Martin-Lopez, N. Maraviglia, A. Neville, C. Harrold, J. Carolan, Y. N. Joglekar, T. Hashimoto, N. Matsuda, J. L. O’Brien, D. P. Tew, and A. Laing, Nature 557, 660 (2018).
  18. M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, Phys. Rev. Lett. 73, 58 (1994).
  19. W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and I. A. Walsmley, Optica 3, 1460 (2016).
  20. S. A. Fldzhyan, M. Y. Saygin, and S. Kulik, Opt. Lett. 45, 2632 (2019).
  21. M. Y. Saygin, I. V. Kondratyev, I. V. Dyakonov, S. Mironov, S. Straupe, and S. P. Kulik, Phys. Rev. Lett. 124, 010501 (2019).
  22. D. P´erez-L´opez, A. L´opez, P. Dasmahapatra, and J. Capmany, Nat. Commun. 11, 6359 (2020).
  23. I. V. Dyakonov, I. Pogorelov, I. B. Bobrov, A. A. Kalinkin, P. Dyakonov, S. A. Evlashin, S. Straupe, and S. Kulik, Phys. Rev. Appl. 10, 044048 (2018).
  24. S. Z. Kuzmin, I. V. Dyakonov, and S. Kulik, Opt. Express 29, 38429 (2021).
  25. B. I. Bantysh, K. G. Katamadze, A. Y. Chernyavskiy, and Y. I. Bogdanov, Opt. Express 31, 16729 (2023).
  26. B. I. Bantysh, A. Y. Chernyavskiy, S. A. Fldzhyan, and Y. I. Bogdanov, Laser Phys. Lett. 21, 015203 (2023).
  27. M. Gr¨afe and A. Szameit, Journal of Physics B: Atomic, Molecular and Optical Physics 53, 073001 (2020).
  28. Y. Ding, D. Bacco, K. Dalgaard, X. Cai, X. Zhou, K. Rottwitt, and L. K. Oxenløwe, npj Quantum Inf. 3(25), 1 (2017).
  29. D. D. B¨uhler, M. Weiss, A. Crespo-Poveda, E. D. S. Nysten, J. J. Finley, K. M¨uller, P. V. Santos, M. M. de Lima, and H. J. Krenner, Nat. Commun. 13(6998), 1 (2022).
  30. D. Nadlinger, P. Drmota, B. C. Nichol, G. Araneda, D. Main, R. Srinivas, D. M. Lucas, C. Ballance, K. Ivanov, E. Y.-Z. Tan, P. Sekatski, R. L. Urbanke, R. Renner, N. Sangouard, and J.-D. Bancal, Nature 607, 682 (2021).
  31. T. van Leent, M. Bock, F. Fertig, R. Garthoff, S. Eppelt, Y. Zhou, P. Malik, M. M. Seubert, T. Bauer, W. Rosenfeld, W. Zhang, C. Becher, and H. Weinfurter, Nature 607, 69 (2021).
  32. R. Storn and K. V. Price, Journal of Global Optimization 11, 341 (1997).
  33. J. W. Tukey, Exploratory data analysis, Addison-Wesley series in behavioral science: quantitative methods, Addison-Wesley Publishing Corporation, Reading, Massachusetts (1977).

© Российская академия наук, 2024

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах