Прямое многофотонное фемтосекундное ИК-лазерное возбуждение решетки алмаза в двухфононной области и модификация центров окраски

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Экспериментально исследовано нелинейное поглощение ультракоротких лазерных импульсов с интенсивностями 0.17–1.7 ТВт/см2 на длине волны собственного двухфононного поглощения (4673 нм) в алмазе типа IIb. Показано, что основным механизмом поглощения в исследуемом образце является двухфотонное поглощение с коэффициентом β2 = 72 ± 7 см/ТВт. При помощи микроспектроскопии пропускания и фотолюминесценции видимого диапазона, а также инфракрасной фурье-микроспектроскопии продемонстрирована возможность лазерно-индуцированной трансформации азотных примесных центров в искусственном алмазе типа Ib при более высоких интенсивностях излучения.

Об авторах

Н. А Смирнов

Физический институт им. П.Н.Лебедева РАН

Email: cna1992@mail.ru
Москва, Россия

Ю. С Гулина

Физический институт им. П.Н.Лебедева РАН

Москва, Россия

Н. И Буслеев

Физический институт им. П.Н.Лебедева РАН

Москва, Россия

П. П Пахольчук

Физический институт им. П.Н.Лебедева РАН

Москва, Россия

А. В Горевой

Физический институт им. П.Н.Лебедева РАН

Москва, Россия

В. Г. Винс

Физический институт им. П.Н.Лебедева РАН

Москва, Россия

С. И Кудряшов

Физический институт им. П.Н.Лебедева РАН

Москва, Россия

Список литературы

  1. W. Herschel, Abstracts of the Papers Printed in the Philosophical Transactions of the Royal Society of London 1, 264 (1832).
  2. H. Rubens and G. Hertz, Ber. d. Berl. Akad. 256, (1912).
  3. H. Liang, P. Krogen, Z. Wang, H. Park, T. Kroh, K. Zawilski, P. Schunemann, J. Moses, L. F. DiMauro, F.X. Kartner, and K.-H. Hong, Nat. Commun. 8, 141 (2017).
  4. M. Bock, L. von Grafenstein, U. Griebner, and T. Elsaesser, JOSA B 35, 18 (2018).
  5. F.K. Tittel, D. Richter, and A. Fried, Solid-state mid-infrared laser sources, Springer, Berlin, Heidelberg (2003).
  6. S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S.Mirov, and V. Gapontsev, Opt. Mater. Express 7, 2636 (2017).
  7. A. Pushkin, E. Migal, D. Suleimanova, E. Mareev, and F. Potemkin, Photonics 9, 90 (2022).
  8. Г.Н. Макаров, УФН 175, 41 (2005).
  9. T. Stensitzki, Y. Yang, V. Kozich, A.A. Ahmed, F. Kossl, O. Kuhn, and K. Heyne, Nat. Chem. 10, 126 (2018).
  10. I. Pupeza, M. Huber, M. Trubetskovet et al. (Collaboration), Nature 577, 52 (2020).
  11. В.О. Компанец, С.И. Кудряшов, Э.Р. Толордава, С.Н. Шелыгина, В. В. Соколова, И.Н. Сараева, М.С. Ковалев, А.А. Ионин, С. В. Чекалин, Письма в ЖЭТФ 113, 365 (2021).
  12. Y.C. Chen, P. S. Salter, S. Knauer, L. Weng, A.C. Frangeskou, C. J. Stephen, S.N. Ishmael, P.R. Dolan, S. Johnson, B. L. Green, G.W. Morley, M. E. Newton, J.G. Rarity, M. J. Booth, and J.M. Smith, Nat. Photon. 11, 77 (2017).
  13. S. Gao, Y.Z. Duan, Z.N. Tian, Y. L. Zhang, Q.D. Chen, B.R. Gao, and H.B. Sun, Opt. Laser Technol. 146, 107527 (2022).
  14. S. Kudryashov, P. Danilov, N. Smirnov, G. Krasin, R. Khmelnitskii, O. Kovalchuk, G. Kriulina, V. Martovitskiy, V. Lednev, P. Sdvizhenskii, Yu. Gulina, E. Rimskaya, E. Kuzmin, J .Chen, M. Kovalev, and A. Levchenko, Nanomaterials 13, 192 (2023).
  15. S. I. Kudryashov, T. Pflug, N. I. Busleev, M. Olbrich, A. Horn, M. S. Kovalev, and N.G. Stsepuro, Opt.Mater. Express 11, 1 (2021).
  16. P.A. Zhokhov and A.M. Zheltikov, Sci. Rep. 8, 1824 (2018).
  17. E. Migal, E. Mareev, E. Smetanina, G. Duchateau, and F. Potemkin, Sci. Rep. 10, 14007 (2020).
  18. A.M. Zaitsev, Optical properties of diamond: a data handbook, Springer Science & Business Media, Berlin (2013).
  19. Y.U. Peter and M. Cardona, Fundamentals of semiconductors: physics and materials properties, Springer Science & Business Media, N.Y. (2010).
  20. S I. Kudryashov, V.G. Vins, P.A. Danilov, E.V. Kuzmin, A.V. Muratov, G.Yu. Kriulina, J. Chen, A.N. Kirichenko, Yu. S. Gulina, S.A. Ostrikov, P.P. Paholchuk, M. S. Kovalev, N.B. Rodionov, A.O. Levchenko, Carbon 201, 399 (2023).
  21. M. Sheik-Bahae, A.A. Said, T.H.Wei, D. J. Hagan, and E.W. van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
  22. Ю.С. Гулина, Оптика и спектроскопия 130, 540 (2022).
  23. R. L. Sutherland, Handbook of nonlinear optics, Marcel Dekker, N.Y. (2003).
  24. T. Wang, N. Venkatram, J. Gosciniak, Y. Cui, G. Qian, W. Ji, and D.T. Tan, Opt. Express 21, 32192 (2013).
  25. E.D. Palik, Handbook of optical constants of solids, Academic press, N.Y. (1998).
  26. I.A. Dobrinets, V.G. Vins, and A.M. Zaitsev, HPHTtreated diamonds, Springer, Berlin, Heidelberg (2016).
  27. H. Kanda and X. Jia, Diamond Relat. Mater. 10, 1665 (2001).
  28. S. I. Kudryashov, P.A. Danilov, N.A. Smirnov, N.G. Stsepuro, A.E. Rupasov, R.A. Khmelnitskii, E.A. Oleynichuk, E.V. Kuzmin, A.O. Levchenko, Yu. S. Gulina, S.N. Shelygina, I.V. Sozaev, M. S. Kovalev, and O.E. Kovalchuk, Appl. Surf. Sci. 575, 151736 (2022).
  29. G.K. Krasin, S. I. Kudryashov, P.A. Danilov, N.A. Smirnov, A.O. Levchenko, and M. S. Kovalev, Eur. Phys. J. D 75, 221 (2021).

© Российская академия наук, 2024

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах