Implementation of a Quantum Memory Protocol Based on the Revival of Silenced Echo in Orthogonal Geometry at the Telecommunication Wavelength

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

An optical quantum memory protocol has been implemented on the basis of the revival of silenced echo at the telecommunication wavelength for signal light fields with a small number of photons. To this end, a long-lived (>1 s) absorption line has been initialized and the orthogonal geometry of the propagation of the signal and rephasing fields has been chosen. An efficiency of revival of (17 ± 1)% has been reached for the orthogonal polarization components of a signal pulse at a storage time of 60 μs. The input pulse contains ~38 photons on average, the revived echo signal includes ~6 photons, and the signal-to-noise ratio is 1.3.

Sobre autores

M. Minnegaliev

Kazan Quantum Center, Kazan National Research Technical University named after A.N. Tupolev, 420111, Kazan, Russia

Email: mansur@kazanqc.org

K. Gerasimov

Kazan Quantum Center, Kazan National Research Technical University named after A.N. Tupolev, 420111, Kazan, Russia

Email: mansur@kazanqc.org

S. Moiseev

Kazan Quantum Center, Kazan National Research Technical University named after A.N. Tupolev, 420111, Kazan, Russia

Autor responsável pela correspondência
Email: mansur@kazanqc.org

Bibliografia

  1. K. Heshami, D.G. England, P.C. Humphreys, P. J. Bustard, V.M. Acosta, J. Nunn, and B. J. Sussman, J. Mod. Opt. 63, 2005 (2016).
  2. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, Rev. Mod. Phys. 83, 33 (2011).
  3. F. Bussi'eres, N. Sangouard, M. Afzelius, H.De Riedmatten, and W. Tittel, J. Mod. Opt. 60, 1519 (2013).
  4. T. Chaneli'ere, G. H'etet, and N. Sangouard, Advances in Atomic, Molecular and Optical Physics 67, 77 (2018).
  5. A. I. Lvovsky, B.C. Sanders, and W. Tittel, Nat. Photonics 3, 706 (2009).
  6. S.A. Moiseev and S. Kroll, Phys. Rev. Lett. 87, 173601 (2001).
  7. W. Tittel, M. Afzelius, T. Chaneli'ere, R. L. Cone, S. Kr¨oll, S.A. Moiseev, and M. Sellars, Laser Photonics Rev. 4, 244 (2009).
  8. V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chaneli'ere, and J.-L. Le Gou¨et, New J. Phys. 13, 093031 (2011).
  9. J. Ruggiero, J.-L. Le Gou¨et, C. Simon, and T. Chaneliere, Phys. Rev. A 79, 053851 (2009).
  10. H.Y. Carr and E.M. Purcell, Phys. Rev. 94, 630 (1954).
  11. M. Bonarota, J. Dajczgewand, A. Louchet-Chauvet, J.-L. Le Gou¨et, and T. Chaneli'ere, Laser Phys. 24, 094003 (2014).
  12. K. I. Gerasimov, M.M. Minnegaliev, S.A. Moiseev, R.V. Urmancheev, T. Chaneli'ere, and A. Louchet-Chauvet, Opt. Spectrosc. 123, 211 (2017).
  13. X.-X. Li, P. Zhou, Y.-H. Chen, and X. Zhang, arXiv:2203.03887v2 (2022).
  14. V. Ranjan, Y. Wen, A.K.V. Keyser, S.E. Kubatkin, A.V. Danilov, T. Lindstr¨om, P. Bertet, and S.E. de Graaf, Phys. Rev. Lett. 129, 180504 (2022).
  15. A. Arcangeli, A. Ferrier, and P. Goldner, Phys. Rev. A 93, 062303 (2016).
  16. M.M. Minnegaliev, K. I. Gerasimov, R.V. Urmancheev, A.M. Zheltikov, and S.A. Moiseev, Phys. Rev. B 103, 174110 (2021).
  17. S.A. Moiseev, M.M. Minnegaliev, E. S. Moiseev, K. I. Gerasimov, A.V. Pavlov, T.A. Rupasov, N.N. Skryabin, A.A. Kalinkin, and S.P. Kulik, Phys. Rev. A 107, 043708 (2023).
  18. C. Liu, Z.-Q. Zhou, T. Zhu, L. Zheng, M. Jin, X. Liu, P.-Y. Li, J. Huang, Y. Ma, T. Tu, T.-S. Yang, C.-F. Li, and G. Guo, Optica 7, 192 (2020).
  19. J. Dajczgewand, J.-L. Le Gou¨et, A. Louchet-Chauvet, and T. Chaneli'ere, Opt. Lett. 39, 2711 (2014).
  20. M.M. Minnegaliev, K. I. Gerasimov, T.N. Sabirov, R.V. Urmancheev, and S.A. Moiseev, JETP Lett. 115, 720 (2022).
  21. F. De Seze, F. Dahes, V. Crozatier, I. Lorger'e, F. Bretenaker, and J. L. Le Gou¨et, Eur. Phys. J. D 33, 343 (2005).
  22. F. K¨onz, Y. Sun, W. Thiel, L. Cone, W. Equall, L. Hutcheson, and M. Macfarlane, Phys. Rev. B Condens. Matter Mater. Phys. 68, 1 (2003).
  23. M. Ranˇci'c, M. P. Hedges, R. L. Ahlefeldt, and M. J. Sellars, Nat. Phys. 14, 50 (2017).
  24. J. S. Stuart, M. Hedges, R. Ahlefeldt, and M. Sellars, Phys. Rev. Res. 3, L032054 (2021).
  25. S. Yasui, M. Hiraishi, A. Ishizawa, H. Omi, T. Inaba, X. Xu, R. Kaji, S. Adachi, and T. Tawara, Optics Continuum 1, 1896 (2022).
  26. W.B. Mims, Phys. Rev. 168, 370 (1968).
  27. N. Sangouard, C. Simon, M. Afzelius, and N. Gisin, Phys. Rev. A 75, 032327 (2007).
  28. T.-X. Zhu, C. Liu, M. Jin, M.-X. Su, Y.-P. Liu,W.-J. Li, Y. Ye, Z.-Q. Zhou, C.-F. Li, and G.-C. Guo, Phys. Rev. Lett. 128, 180501 (2022).
  29. B. I. Bantysh, K.G. Katamadze, Y. I. Bogdanov, and K. I. Gerasimov, JETP Lett. 116, 29 (2022).
  30. Y.-Z. Ma, M. Jin, D.-L. Chen, Z.-Q. Zhou, C.-F. Li, and G.-C. Guo, Nat. Commun. 12, 4378 (2021).
  31. G. Heinze, C. Hubrich, and T. Halfmann, Phys. Rev. Lett. 111, 033601 (2013).
  32. Y. Ma, Y.-Z. Ma, Z.-Q. Zhou, C.-F. Li, and G.-C. Guo, Nat. Commun. 12, 2381 (2021).
  33. Moiseev S.A., Skrebnev V.A. Journal of Physics B: Atomic, Molecular and Optical Physics. 2015. Т. 48. № 13. С. 135503.
  34. M. Ranˇci'c, High resolution spectroscopy of erbium solids. PhD thesis, Australian National University, Canberra (2018); doi: 10.25911/5d67b2f1ee8f3.
  35. A.M. Dibos, M. Raha, C.M. Phenicie, and J.D. Thompson, Phys. Rev. Lett. 120, 243601 (2018).
  36. S. Chen, M. Raha, C.M. Phenicie, S. Ourari, and J.D. Thompson, Science 370, 592 (2020).
  37. D. Liu, P.-Y. Li, T. Zhu, L. Zheng, J. Huang, Z.-Q. Zhou, C.-F. Li, and G.-C. Guo, Phys. Rev. Lett. 129, 210501 (2022).

Declaração de direitos autorais © Российская академия наук, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies