Implementation of a Quantum Memory Protocol Based on the Revival of Silenced Echo in Orthogonal Geometry at the Telecommunication Wavelength

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An optical quantum memory protocol has been implemented on the basis of the revival of silenced echo at the telecommunication wavelength for signal light fields with a small number of photons. To this end, a long-lived (>1 s) absorption line has been initialized and the orthogonal geometry of the propagation of the signal and rephasing fields has been chosen. An efficiency of revival of (17 ± 1)% has been reached for the orthogonal polarization components of a signal pulse at a storage time of 60 μs. The input pulse contains ~38 photons on average, the revived echo signal includes ~6 photons, and the signal-to-noise ratio is 1.3.

About the authors

M. M Minnegaliev

Kazan Quantum Center, Kazan National Research Technical University named after A.N. Tupolev, 420111, Kazan, Russia

Email: mansur@kazanqc.org

K. I Gerasimov

Kazan Quantum Center, Kazan National Research Technical University named after A.N. Tupolev, 420111, Kazan, Russia

Email: mansur@kazanqc.org

S. A Moiseev

Kazan Quantum Center, Kazan National Research Technical University named after A.N. Tupolev, 420111, Kazan, Russia

Author for correspondence.
Email: mansur@kazanqc.org

References

  1. K. Heshami, D.G. England, P.C. Humphreys, P. J. Bustard, V.M. Acosta, J. Nunn, and B. J. Sussman, J. Mod. Opt. 63, 2005 (2016).
  2. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, Rev. Mod. Phys. 83, 33 (2011).
  3. F. Bussi'eres, N. Sangouard, M. Afzelius, H.De Riedmatten, and W. Tittel, J. Mod. Opt. 60, 1519 (2013).
  4. T. Chaneli'ere, G. H'etet, and N. Sangouard, Advances in Atomic, Molecular and Optical Physics 67, 77 (2018).
  5. A. I. Lvovsky, B.C. Sanders, and W. Tittel, Nat. Photonics 3, 706 (2009).
  6. S.A. Moiseev and S. Kroll, Phys. Rev. Lett. 87, 173601 (2001).
  7. W. Tittel, M. Afzelius, T. Chaneli'ere, R. L. Cone, S. Kr¨oll, S.A. Moiseev, and M. Sellars, Laser Photonics Rev. 4, 244 (2009).
  8. V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chaneli'ere, and J.-L. Le Gou¨et, New J. Phys. 13, 093031 (2011).
  9. J. Ruggiero, J.-L. Le Gou¨et, C. Simon, and T. Chaneliere, Phys. Rev. A 79, 053851 (2009).
  10. H.Y. Carr and E.M. Purcell, Phys. Rev. 94, 630 (1954).
  11. M. Bonarota, J. Dajczgewand, A. Louchet-Chauvet, J.-L. Le Gou¨et, and T. Chaneli'ere, Laser Phys. 24, 094003 (2014).
  12. K. I. Gerasimov, M.M. Minnegaliev, S.A. Moiseev, R.V. Urmancheev, T. Chaneli'ere, and A. Louchet-Chauvet, Opt. Spectrosc. 123, 211 (2017).
  13. X.-X. Li, P. Zhou, Y.-H. Chen, and X. Zhang, arXiv:2203.03887v2 (2022).
  14. V. Ranjan, Y. Wen, A.K.V. Keyser, S.E. Kubatkin, A.V. Danilov, T. Lindstr¨om, P. Bertet, and S.E. de Graaf, Phys. Rev. Lett. 129, 180504 (2022).
  15. A. Arcangeli, A. Ferrier, and P. Goldner, Phys. Rev. A 93, 062303 (2016).
  16. M.M. Minnegaliev, K. I. Gerasimov, R.V. Urmancheev, A.M. Zheltikov, and S.A. Moiseev, Phys. Rev. B 103, 174110 (2021).
  17. S.A. Moiseev, M.M. Minnegaliev, E. S. Moiseev, K. I. Gerasimov, A.V. Pavlov, T.A. Rupasov, N.N. Skryabin, A.A. Kalinkin, and S.P. Kulik, Phys. Rev. A 107, 043708 (2023).
  18. C. Liu, Z.-Q. Zhou, T. Zhu, L. Zheng, M. Jin, X. Liu, P.-Y. Li, J. Huang, Y. Ma, T. Tu, T.-S. Yang, C.-F. Li, and G. Guo, Optica 7, 192 (2020).
  19. J. Dajczgewand, J.-L. Le Gou¨et, A. Louchet-Chauvet, and T. Chaneli'ere, Opt. Lett. 39, 2711 (2014).
  20. M.M. Minnegaliev, K. I. Gerasimov, T.N. Sabirov, R.V. Urmancheev, and S.A. Moiseev, JETP Lett. 115, 720 (2022).
  21. F. De Seze, F. Dahes, V. Crozatier, I. Lorger'e, F. Bretenaker, and J. L. Le Gou¨et, Eur. Phys. J. D 33, 343 (2005).
  22. F. K¨onz, Y. Sun, W. Thiel, L. Cone, W. Equall, L. Hutcheson, and M. Macfarlane, Phys. Rev. B Condens. Matter Mater. Phys. 68, 1 (2003).
  23. M. Ranˇci'c, M. P. Hedges, R. L. Ahlefeldt, and M. J. Sellars, Nat. Phys. 14, 50 (2017).
  24. J. S. Stuart, M. Hedges, R. Ahlefeldt, and M. Sellars, Phys. Rev. Res. 3, L032054 (2021).
  25. S. Yasui, M. Hiraishi, A. Ishizawa, H. Omi, T. Inaba, X. Xu, R. Kaji, S. Adachi, and T. Tawara, Optics Continuum 1, 1896 (2022).
  26. W.B. Mims, Phys. Rev. 168, 370 (1968).
  27. N. Sangouard, C. Simon, M. Afzelius, and N. Gisin, Phys. Rev. A 75, 032327 (2007).
  28. T.-X. Zhu, C. Liu, M. Jin, M.-X. Su, Y.-P. Liu,W.-J. Li, Y. Ye, Z.-Q. Zhou, C.-F. Li, and G.-C. Guo, Phys. Rev. Lett. 128, 180501 (2022).
  29. B. I. Bantysh, K.G. Katamadze, Y. I. Bogdanov, and K. I. Gerasimov, JETP Lett. 116, 29 (2022).
  30. Y.-Z. Ma, M. Jin, D.-L. Chen, Z.-Q. Zhou, C.-F. Li, and G.-C. Guo, Nat. Commun. 12, 4378 (2021).
  31. G. Heinze, C. Hubrich, and T. Halfmann, Phys. Rev. Lett. 111, 033601 (2013).
  32. Y. Ma, Y.-Z. Ma, Z.-Q. Zhou, C.-F. Li, and G.-C. Guo, Nat. Commun. 12, 2381 (2021).
  33. Moiseev S.A., Skrebnev V.A. Journal of Physics B: Atomic, Molecular and Optical Physics. 2015. Т. 48. № 13. С. 135503.
  34. M. Ranˇci'c, High resolution spectroscopy of erbium solids. PhD thesis, Australian National University, Canberra (2018); doi: 10.25911/5d67b2f1ee8f3.
  35. A.M. Dibos, M. Raha, C.M. Phenicie, and J.D. Thompson, Phys. Rev. Lett. 120, 243601 (2018).
  36. S. Chen, M. Raha, C.M. Phenicie, S. Ourari, and J.D. Thompson, Science 370, 592 (2020).
  37. D. Liu, P.-Y. Li, T. Zhu, L. Zheng, J. Huang, Z.-Q. Zhou, C.-F. Li, and G.-C. Guo, Phys. Rev. Lett. 129, 210501 (2022).

Copyright (c) 2023 Российская академия наук

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies