Band Structure of Bilayer Graphene Intercalated by Potassium Atoms. Ab Initio Calculations

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using the electron density functional theory, the electronic band structure of pure and potassium-intercalated bilayer graphene has been studied. It is shown that after the intercalation process, a band gap appears in the band structure of bilayer graphene. In addition, the energy gap changes nonlinearly depending on the intercalate concentration in the interlayer space of bilayer graphene. We also calculated the energy spectra of bilayer graphene containing vacancy defects, the presence of which leads to the appearance of mid-gap states.

Sobre autores

Zeytun Akhmatov

Kabardino-Balkarian State University

Email: ahmatov.z@bk.ru
360004, Nalchik, Russia

Zarif Akhmatov

Kabardino-Balkarian State University; Southern Mathematical Institute, Vladikavkaz Scientific Center, Russian Academy of Sciences

Autor responsável pela correspondência
Email: ahmatov.z@bk.ru
360004, Nalchik, Russia; 362027, Vladikavkaz, Russia

Bibliografia

  1. K. S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).
  2. K. S. Novoselov, D.V. Andreeva, W. Ren, and G. Shan, Front. Phys. 14, 13301 (2019).
  3. M. Hu, N. Zhang, G. Shan, J. Gao, J. Liu, and R.K.Y. Li, Front. Phys. 13, 138113 (2018).
  4. R. Wang, X. Ren, Z. Yan, L. J. Jiang, W.E. I. Sha, and G.C. Shan, Front. Phys. 14, 13603 (2019).
  5. X. Gan, D. Englund, D.V. Thourhout, and J. Zhao, Appl. Phys. Rev. 9, 021302 (2022).
  6. A.Kh. Khokonov and Z.A. Akhmatov, J. Phys.: Conf. Ser. 1556, 012053 (2020).
  7. A.K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
  8. A.K. Geim, Science 324, 1530 (2009).
  9. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K. S. Novoselov, and A.K. Geim, Rev. Mod. Phys. 81, 109 (2009).
  10. Q. Yan, B. Huang, J. Yu, F. Zheng, J. Zang, J. Wu, B.- L. Gu, F. Liu, and W. Duan, Nano Lett. 7, 1469 (2007).
  11. M.Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).
  12. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319, 1229 (2008).
  13. X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, Phys. Rev. Lett. 100, 206803 (2008).
  14. A. Betti, G. Fiori, and G. Iannaccone, Appl. Phys. Lett. 98, 212111 (2011).
  15. B. Huang, Q. Xu, and S. Wei, Phys. Rev. B 84, 155406 (2011).
  16. D. L. Tiwari and K. Sivasankaran, Superlattices and Microstructures 113, 244 (2018).
  17. G. Giovannetti, P.A. Khomyakov, G. Brocks, P. J. Kelly, and J. Brink, Phys. Rev. B 76, 073103 (2007).
  18. B. Uchoa and A.H. Castro Neto, Phys. Rev. Lett. 98, 146801 (2007).
  19. B. Uchoa, C.-Y. Lin, and A.H. Castro Neto, Phys. Rev. B 77, 035420 (2008).
  20. M. Wu, C. Cao, and J. Z. Jiang, Nanotechnology 21, 505202 (2010).
  21. P. Rani and V.K. Jindal, RSC Adv. 3, 802 (2013).
  22. Z.A. Akhmatov and Z.A. Akhmatov, Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials 14, 277 (2022).
  23. L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S.V. Morozov, A. S. Mayorov, N.M.R. Peres, A.H. Castro Neto, J. Leist, A.K. Geim, L.A. Ponomarenko, and K. S. Novoselov, Nano Lett. 12, 1707 (2012).
  24. L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S.V. Morozov, N.M.R. Peres, J. Leist, A.K. Geim, K. S. Novoselov, and L.A. Ponomarenko, Science 335, 947 (2012).
  25. E.E. Vdovin, A. Mishchenko, M.T. Greenaway et al. (Collaboration), Phys. Rev. Lett. 116, 186603 (2016).
  26. K. S. Kim, A.L. Walter, L. Moreschini et al. (Collaboration), Nat. Mater. 12, 887 (2013).
  27. F. J. Culchac, R.R. Del Grande, R.B. Capaz, L. Chio, and E. S. Morell, Nanoscale 12, 5014 (2020).
  28. N.R. Chebrolu, B. L. Chittari, and J. Jung, Phys. Rev. B 99, 235417 (2019).
  29. P. Giannozzi, S. Baroni, N. Bonini et al. (Collaboration), J. Phys.: Condens. Matter 21, 395502 (2009).
  30. P.E. Blochl, Phys. Rev. B 50, 17953 (1994).
  31. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
  32. H. J. Monkhorst and J.D. Park, Phys. Rev. B 13, 5188 (1976).
  33. A.V. Rozhkov, A.O. Sboychakov, A.L. Rakhmanov, and F. Nori, Phys. Rep. 648, 1 (2016).
  34. T. Vu, T.K.Q. Nguyen, A. Huynh, T. Phan, and V. Tran, Superlattices and Microstructures 102, 451 (2017).

Declaração de direitos autorais © Российская академия наук, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies