Band Structure of Bilayer Graphene Intercalated by Potassium Atoms. Ab Initio Calculations

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Using the electron density functional theory, the electronic band structure of pure and potassium-intercalated bilayer graphene has been studied. It is shown that after the intercalation process, a band gap appears in the band structure of bilayer graphene. In addition, the energy gap changes nonlinearly depending on the intercalate concentration in the interlayer space of bilayer graphene. We also calculated the energy spectra of bilayer graphene containing vacancy defects, the presence of which leads to the appearance of mid-gap states.

Авторлар туралы

Zeytun Akhmatov

Kabardino-Balkarian State University

Email: ahmatov.z@bk.ru
360004, Nalchik, Russia

Zarif Akhmatov

Kabardino-Balkarian State University; Southern Mathematical Institute, Vladikavkaz Scientific Center, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: ahmatov.z@bk.ru
360004, Nalchik, Russia; 362027, Vladikavkaz, Russia

Әдебиет тізімі

  1. K. S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).
  2. K. S. Novoselov, D.V. Andreeva, W. Ren, and G. Shan, Front. Phys. 14, 13301 (2019).
  3. M. Hu, N. Zhang, G. Shan, J. Gao, J. Liu, and R.K.Y. Li, Front. Phys. 13, 138113 (2018).
  4. R. Wang, X. Ren, Z. Yan, L. J. Jiang, W.E. I. Sha, and G.C. Shan, Front. Phys. 14, 13603 (2019).
  5. X. Gan, D. Englund, D.V. Thourhout, and J. Zhao, Appl. Phys. Rev. 9, 021302 (2022).
  6. A.Kh. Khokonov and Z.A. Akhmatov, J. Phys.: Conf. Ser. 1556, 012053 (2020).
  7. A.K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
  8. A.K. Geim, Science 324, 1530 (2009).
  9. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K. S. Novoselov, and A.K. Geim, Rev. Mod. Phys. 81, 109 (2009).
  10. Q. Yan, B. Huang, J. Yu, F. Zheng, J. Zang, J. Wu, B.- L. Gu, F. Liu, and W. Duan, Nano Lett. 7, 1469 (2007).
  11. M.Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).
  12. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319, 1229 (2008).
  13. X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, Phys. Rev. Lett. 100, 206803 (2008).
  14. A. Betti, G. Fiori, and G. Iannaccone, Appl. Phys. Lett. 98, 212111 (2011).
  15. B. Huang, Q. Xu, and S. Wei, Phys. Rev. B 84, 155406 (2011).
  16. D. L. Tiwari and K. Sivasankaran, Superlattices and Microstructures 113, 244 (2018).
  17. G. Giovannetti, P.A. Khomyakov, G. Brocks, P. J. Kelly, and J. Brink, Phys. Rev. B 76, 073103 (2007).
  18. B. Uchoa and A.H. Castro Neto, Phys. Rev. Lett. 98, 146801 (2007).
  19. B. Uchoa, C.-Y. Lin, and A.H. Castro Neto, Phys. Rev. B 77, 035420 (2008).
  20. M. Wu, C. Cao, and J. Z. Jiang, Nanotechnology 21, 505202 (2010).
  21. P. Rani and V.K. Jindal, RSC Adv. 3, 802 (2013).
  22. Z.A. Akhmatov and Z.A. Akhmatov, Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials 14, 277 (2022).
  23. L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S.V. Morozov, A. S. Mayorov, N.M.R. Peres, A.H. Castro Neto, J. Leist, A.K. Geim, L.A. Ponomarenko, and K. S. Novoselov, Nano Lett. 12, 1707 (2012).
  24. L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S.V. Morozov, N.M.R. Peres, J. Leist, A.K. Geim, K. S. Novoselov, and L.A. Ponomarenko, Science 335, 947 (2012).
  25. E.E. Vdovin, A. Mishchenko, M.T. Greenaway et al. (Collaboration), Phys. Rev. Lett. 116, 186603 (2016).
  26. K. S. Kim, A.L. Walter, L. Moreschini et al. (Collaboration), Nat. Mater. 12, 887 (2013).
  27. F. J. Culchac, R.R. Del Grande, R.B. Capaz, L. Chio, and E. S. Morell, Nanoscale 12, 5014 (2020).
  28. N.R. Chebrolu, B. L. Chittari, and J. Jung, Phys. Rev. B 99, 235417 (2019).
  29. P. Giannozzi, S. Baroni, N. Bonini et al. (Collaboration), J. Phys.: Condens. Matter 21, 395502 (2009).
  30. P.E. Blochl, Phys. Rev. B 50, 17953 (1994).
  31. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
  32. H. J. Monkhorst and J.D. Park, Phys. Rev. B 13, 5188 (1976).
  33. A.V. Rozhkov, A.O. Sboychakov, A.L. Rakhmanov, and F. Nori, Phys. Rep. 648, 1 (2016).
  34. T. Vu, T.K.Q. Nguyen, A. Huynh, T. Phan, and V. Tran, Superlattices and Microstructures 102, 451 (2017).

© Российская академия наук, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>