Formation of Droplets of the Order Parameter and Superconductivity in Inhomogeneous Fermi–Bose Mixtures (Brief Review)

Мұқаба
  • Авторлар: Kagan M.1,2, Aksenov S.3, Turlapov A.4,5,6, Ikhsanov R.1, Kugel' K.1,7, Mazur E.8,9, Kuznetsov E.10,11,12, Silkin V.13,14,15, Burovskiy E.1
  • Мекемелер:
    1. National Research University Higher School of Economics, 101000, Moscow, Russia
    2. Kapitza Institute for Physical Problems, Russian Academy of Sciences, 119334, Moscow, Russia
    3. Kirensky Institute of Physics, Federal Research Center KSC, Siberian Branch, Russian Academy of Sciences, 660036, Krasnoyarsk, Russia
    4. Institute of Applied Physics, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia
    5. Moscow Institute of Physics and Technology (National Research University), 141700, Dolgoprudnyi, Moscow region, Russia
    6. Russian Quantum Center, 143025, Skolkovo, Moscow, Russia
    7. Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412, Moscow, Russia
    8. National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russia
    9. National Research Center Kurchatov Institute, 123182, Moscow, Russia
    10. Lebedev Physical Institute, Russian Academy of Sciences, 119991, Moscow, Russia
    11. Landau Institute of Theoretical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia
    12. Skolkovo Institute of Science and Technology, 121205, Skolkovo, Moscow, Russia
    13. Donostia International Physics Center (DIPC), 20018, San Sebastian/Donostia, Basque Country, Spain
    14. IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Basque Country, Spain
    15. Departamento de Polimeros y Materiales Avanzados: Fisica, Quimica y Tecnologia, Facultad de Ciencias Quimicas, Universidad del Pais Vasco UPV/EHU, Apartado 1072, 20080, San Sebastiain/Donostia, Basque Country, Spain
  • Шығарылым: Том 117, № 9-10 (5) (2023)
  • Беттер: 754-764
  • Бөлім: Articles
  • URL: https://journals.rcsi.science/0370-274X/article/view/145219
  • DOI: https://doi.org/10.31857/S1234567823100075
  • EDN: https://elibrary.ru/CNBVLT
  • ID: 145219

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The studies of a number of systems treated in terms of an inhomogeneous (spatially separated) Fermi–Bose mixture with superconducting clusters or droplets of the order parameter in a host medium with unpaired normal states are reviewed. A spatially separated Fermi–Bose mixture is relevant to superconducting Ba-KBiO3 bismuth oxides. Droplets of the order parameter can occur in thin films of a dirty metal, described in the framework of the strongly attractive two-dimensional Hubbard model at a low electron density with a clearly pronounced diagonal disorder. The Bose–Einstein condensate droplets are formed in mixtures and dipole gases with an imbalance in the densities of the Fermi and Bose components. The Bose–Einstein condensate clusters also arise at the center or at the periphery of a magnetic trap involving spin-polarized Fermi gases. Exciton and plasmon collapsing droplets can emerge in the presence of the exciton–exciton or plasmon–plasmon interaction. The plasmon contribution to the charge screening in MgB2 leads to the formation of spatially modulated inhomogeneous structures. In metallic hydrogen and metal hydrides, droplets can be formed in shock-wave experiments at the boundary of the first-order phase transition between the metallic and molecular phases. In a spatially separated Fermi–Bose mixture arising in an Aharonov–Bohm interference ring with a superconducting bridge in a topologically nontrivial state, additional Fano resonances may appear and collapse due to the presence of edge Majorana modes in the system.

Авторлар туралы

M. Kagan

National Research University Higher School of Economics, 101000, Moscow, Russia; Kapitza Institute for Physical Problems, Russian Academy of Sciences, 119334, Moscow, Russia

Email: kagan@kapitza.ras.ru

S. Aksenov

Kirensky Institute of Physics, Federal Research Center KSC, Siberian Branch, Russian Academy of Sciences, 660036, Krasnoyarsk, Russia

Email: kagan@kapitza.ras.ru

A. Turlapov

Institute of Applied Physics, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia; Moscow Institute of Physics and Technology (National Research University), 141700, Dolgoprudnyi, Moscow region, Russia; Russian Quantum Center, 143025, Skolkovo, Moscow, Russia

Email: kagan@kapitza.ras.ru

R. Ikhsanov

National Research University Higher School of Economics, 101000, Moscow, Russia

Email: kagan@kapitza.ras.ru

K. Kugel'

National Research University Higher School of Economics, 101000, Moscow, Russia; Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412, Moscow, Russia

Email: kagan@kapitza.ras.ru

E. Mazur

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russia; National Research Center Kurchatov Institute, 123182, Moscow, Russia

Email: kagan@kapitza.ras.ru

E. Kuznetsov

Lebedev Physical Institute, Russian Academy of Sciences, 119991, Moscow, Russia; Landau Institute of Theoretical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia; Skolkovo Institute of Science and Technology, 121205, Skolkovo, Moscow, Russia

Email: kagan@kapitza.ras.ru

V. Silkin

Donostia International Physics Center (DIPC), 20018, San Sebastian/Donostia, Basque Country, Spain; IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Basque Country, Spain; Departamento de Polimeros y Materiales Avanzados: Fisica, Quimica y Tecnologia, Facultad de Ciencias Quimicas, Universidad del Pais Vasco UPV/EHU, Apartado 1072, 20080, San Sebastiain/Donostia, Basque Country, Spain

Email: kagan@kapitza.ras.ru

E. Burovskiy

National Research University Higher School of Economics, 101000, Moscow, Russia

Хат алмасуға жауапты Автор.
Email: kagan@kapitza.ras.ru

Әдебиет тізімі

  1. A. P. Menushenkov, K. V. Klementev, A. V. Kuznetsov, and M. Yu. Kagan, ЖЭТФ 120, 700 (2001).
  2. A. P. Menushenkov, A. V. Kuznetsov, K. V. Klementiev, and M. Yu. Kagan, J. Supercond. Nov. Magn. 29, 701 (2016).
  3. M. Yu. Kagan, K. I. Kugel, and A. L. Rakhmanov, Phys. Rep. 916, 1 (2021).
  4. М. Ю. Каган, Е. А. Мазур, ЖЭТФ 159, 696 (2021).
  5. E. A. Mazur, R. Sh. Ikhsanov, and M. Yu. Kagan, J. Phys. Conf. Ser. 2036, 012019 (2021).
  6. Y. Shin, M. W. Zwierlein, C. H. Schunck, A. Schirotzek, and W. Ketterle, Phys. Rev. Lett. 97, 030401 (2006).
  7. W. Ong, C. Cheng, I. Arakelyan, and J. E. Thomas, Phys. Rev. Lett. 114, 110403 (2015).
  8. E. A. Burovski, R. Sh. Ikhsanov, A. A. Kuznetsov, and M. Yu. Kagan, J. Phys. Conf. Ser. 1163, 012046 (2019).
  9. P. Fulde and R. A. Ferrell, Phys. Rev. A 135, 550 (1964).
  10. А. И. Ларкин, Ю. Н. Овчинников, ЖЭТФ 47, 1136 (1964).
  11. E. A. Kuznetsov, M. Yu. Kagan, and A. V. Turlapov, Phys. Rev. A 101, 041612 (2020).
  12. Е. А. Кузнецов, М. Ю. Каган, ТМФ 202, 458 (2020).
  13. Е. А. Кузнецов, М. Ю. Каган, ЖЭТФ 159, 794 (2021).
  14. Л. П. Питаевский, УФН 178, 633 (2008).
  15. E. P. Gross, Nuovo Cimento 20, 454 (1961).
  16. В. И. Таланов, Письма в ЖЭТФ 11, 303 (1971).
  17. С. И. Анисимов, Ю. И. Лысиков, ПММ 34, 926 (1970).
  18. В. П. Ермаков, Дифференциальные уравнения второго порядка. Условия интегрируемости в конечном виде. Из лекций по интегрированию дифференциальных уравнений Универ. тип., Киев (1880).
  19. K. M. O'Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and J. E. Thomas, Science 298, 2179 (2002).
  20. С. Н. Власов, В. А. Петрищев, В. И. Таланов, Изв. вузов. Радиофизика 14, 1353 (1971).
  21. В. Е. Захаров, Е. А. Кузнецов, ЖЭТФ 91, 1310 (1986).
  22. В. Е. Захаров, Е. А. Кузнецов, УФН 182, 569 (2012).
  23. В. Е. Захаров, ЖЭТФ 62, 1745 (1972).
  24. Е. Г. Бровман, Ю. Каган, А. Холас, В. В. Пушкарев, Письма в ЖЭТФ 18, 269 (1973).
  25. G. Modugno, G. Roati, F. Riboli, F. Ferlaino, R. J. Brecha, and M. Inguscio, Science 297, 2240 (2002).
  26. S. T. Chui and V. N. Ryzhov, Phys. Rev. A 69, 043607 (2004).
  27. S. T. Chui, V. N. Ryzhov, and E. E. Tareyeva, Письма в ЖЭТФ 80, 305 (2004).
  28. M. Yu. Kagan, I. V. Brodsky, D. V. Efremov, and A. V. Klaptsov, Phys. Rev. A 70, 023407 (2004).
  29. М. Ю. Каган, А. В. Клапцов, И. В. Бродский, R.Combescot, X. Leyronas, УФН 176, 1105 (2006).
  30. A. V. Turlapov and M. Yu. Kagan, J. Phys. Condens. Matter 29, 383004 (2019).
  31. М. Ю. Каган, А. В. Турлапов, УФН 189, 225 (2019).
  32. I. F. Barbur, H. Kadan, F. Schmit, M. Wenzel, and T. Pfau, Phys. Rev. Lett. 116, 215301 (2016).
  33. V. M. Silkin, A. Balassis, P. M. Eschenique, and E. V. Chulkov, Phys. Rev. B 80, 054521 (2009).
  34. М. Ю. Каган, В. А. Мицкан, М. М. Коровушкин, УФН 185, 785 (2015).
  35. Р. Ш. Ихсанов, Е. А. Мазур, М. Ю. Каган, Изв. Уфимского научного центра РАН 1, 49 (2023).
  36. R. Szczesniak, Aсta Phys. Pol. A 109, 179 (2006).
  37. A. P. Durajski, Sci. Rep. 6, 38570 (2016).
  38. Н. A. Кудряшов, A. A. Кутуков, Е. А. Мазур, Письма в ЖЭТФ 104, 488 (2016).
  39. I. A. Kruglov, D. V. Semenok, H. Song, R. Szcze'sniak, I. A. Wrona, R. Akashi, E. M. M. Davari, D. Duan, C. Tian, A. G. Kvashnin, and A. R. Oganov, Phys. Rev. B 101, 024508 (2020).
  40. O. V. Dolgov, R. K. Kremer, J. Kortus, A. A. Golubov, and S. V. Shulga, Phys. Rev. B 72, 024504 (2005).
  41. Z. Zhang, T. Cui, M. J. Hutcheon, A. M. Shipley, H. Song, M. Du, V. Z. Kresin, D. Duan, C. J. Pickard, and Y. Yao, Phys. Rev. Lett. 128, 047001 (2022).
  42. P. B. Allen and R. C. A. Dynes, Phys. Rev. B 12, 905 (1975).
  43. F. Marsiglio and J. P. Carbotte, in Superconductivity. Conventional and Unconventional Superconductors, Springer: Berlin (2008), v. 1, p. 73.
  44. J. P. Carbotte, Rev. Mod. Phys 62, 1027 (1990).
  45. Е. Г. Бровман, Ю. Каган, А. Холас, ЖЭТФ 61, 2429 (1972).
  46. M. Yu. Kagan, Письма в ЖЭТФ 103, 822 (2016).
  47. M. Yu. Kagan and A. Bianconi, Condens. Matter 4, 51 (2019).
  48. M. Houtput, J. Tempere, and I. F. Silvera, Phys. Rev. B 100, 134106 (2019).
  49. И. М. Халатников, Введение в теорию сверхтекучести, Наука, М. (1965).
  50. M. D. Knudson, M. P. Desjarlais, A. Becker, R. W. Lemke, K. R. Cochrane, M. E. Savage, D. E. Bliss, T. R. Mattsson, and R. Redmer, Science 348, 1455 (2015).
  51. Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
  52. M. Yu. Kagan, V. V. Val'kov, and S. V. Aksenov, Phys. Rev. B 95, 035411 (2017).
  53. M. Yu. Kagan, V. V. Val'kov, and S. V. Aksenov, JMMM 440, 15 (2017).
  54. М. Ю. Каган, С. В. Аксенов, Письма в ЖЭТФ 107, 512 (2018).
  55. В. В. Вальков, М. С. Шустин, С. В. Аксенов, А. О. Злотников, А. Д. Федосеев, В. А. Мицкан, М. Ю. Каган, УФН 192, 3 (2022).
  56. S. V. Aksenov, M. Yu. Kagan, and V. V. Val'kov, J. Phys. Condens. Matt 31, 225301 (2019).
  57. С. В. Аксенов, М. Ю. Каган, Письма в ЖЭТФ 111, 391 (2020).
  58. U. Fano, Phys. Rev. 124, 1866 (1961).
  59. E. Majorana, Nuovo Cimento 5, 171 (1937).
  60. A. Yu. Kitaev, УФН 171, прил. к 10, 131 (2001).
  61. S. V. Aksenov, J. Phys. Condens. Matter 34, 255301 (2022).
  62. Л. В. Келдыш, УФН 187, 1273 (2017).

© Российская академия наук, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>