First law of de Sitter thermodynamics
- Authors: Volovik G.E1
-
Affiliations:
- Landau Institute for Theoretical Physics
- Issue: Vol 121, No 9-10 (2025)
- Pages: 806-808
- Section: Articles
- URL: https://journals.rcsi.science/0370-274X/article/view/293713
- DOI: https://doi.org/10.31857/S0370274X25050146
- EDN: https://elibrary.ru/KJCDRV
- ID: 293713
Cite item
Abstract
The de Sitter state has a special symmetry: it is homogeneous, and its curvature is constant in space. Since all the points in the de Sitter space are equivalent, this state is described by local thermodynamics. This state has the local temperature T = H/π (which is twice the Gibbons–Hawking temperature), the local entropy density, the local energy density, and also the local gravitational degrees of freedom – the scalar curvature R and the effective gravitational coupling K. On the other hand, there is the cosmological horizon, which can be also characterized by the thermodynamic relations. We consider the connections between the local thermodynamics and the thermodynamics of the cosmological horizon. In particular, there is the holographic connection between the entropy density integrated over the Hubble volume and the Gibbons–Hawking entropy of the horizon, Svolume = Shorizon = A/4G. We also consider the first law of thermodynamics in these two approaches. In the local thermodynamics, on the one hand, the first law is valid for an arbitrary volume V of de Sitter space. On the other hand, the first law is also applicable to the thermodynamics of the horizon. In both cases, the temperature is the same. This consideration is extended to the contracting de Sitter with its negative entropy, Svolume = Shorizon = −A/4G.
About the authors
G. E Volovik
Landau Institute for Theoretical Physics
Author for correspondence.
Email: volovikgrigory@gmail.com
Chernogolovka, Russia
References
- G. Gibbons and S. Hawking, Phys. Rev. D 15, 2738 (1977).
- T. Padmanabhan, Class. Quantum Gravity 19, 5387 (2002).
- I. H. Brevik, S. Nojiri, S. D. Odintsov, and L. Vanzo, Phys. Rev. D 70, 043520 (2004).
- T. Markkanen, Eur. Phys. J. C 78, 97 (2018).
- E. T. Akhmedov, K. V. Bazarov, D. V. Diakonov, and U. Moschella, Phys. Rev. D 102, 085003 (2020).
- D. A. Galante, PoS(Modave2022)003.
- B. Banihashemi, T. Jacobson, A. Svesko, and M. Visser, JHEP 01, 054 (2023).
- D. V. Diakonov, arXiv:2504.01942 [hep-th].
- P. Painlev´e, C. R. Acad. Sci. (Paris) 173, 677 (1921).
- A. Gullstrand, Arkiv. Mat. Astron. Fys. 16, 1 (1922).
- G. E. Volovik, JETP Lett. 90, 1 (2009).
- G. E. Volovik, arXiv:2410.04392.
- H. Maxfield and Z. Zahraee, JHEP 11, 093 (2022).
- J. Bros, H. Epstein, and U. Moschella, JCAP 0802, 003 (2008).
- A. M. Polyakov, Nucl. Phys. B 834, 316 (2010).
- G. E. Volovik, Symmetry 16, 763 (2024).
- G. E. Volovik, Pis’ma v ZhETF 119, 560 (2024) [G. E. Volovik, JETP Lett. 119, 564 (2024)].
- Ya. B. Zel’dovich, JETP 14, 1143 (1962).
Supplementary files
