Indutsirovannoe fononami ushirenie spektral'noy linii v primesnom stekle v ramkakh modeli rezonansnykh kolebatel'nykh mod: tetra-tret-butilterrilen v poliizobutilene

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Ранее мы показали [PRB 110, 045430 (2024)], что уширение бесфононных линий одиночных молекул тетра-трет-бутилтеррилена, внедренных в матрицу аморфного полиизобутилена, является результатом взаимодействия с резонансными колебательными модами, которые возникают в результате влияния примеси на нормальные моды матрицы. Однако оставался вопрос, способен ли данный подход успешно описать многочисленные экспериментальные данные по спектроскопии одиночных молекул и фотонного эха, полученные ранее для той же системы примесь/матрица. В настоящей работе мы демонстрируем высокую предсказательную силу модели резонансных мод, рассматриваемой в рамках общей теории электрон-фононного взаимодействия, а также демонстрируем хорошее согласие со всеми экспериментальными данными. Проанализировав данные по спектроскопии одиночных молекул, мы обнаружили неожиданно большую дисперсию силовых констант для примесных молекул. Чтобы объяснить данный эффект, мы предлагаем простую микроскопическую модель, предполагающую флуктуации расстояния между примесной молекулой и ее ближайшим окружением.

References

  1. J.-H. Kim, S. Aghaeimeibodi, J. Carolan, D. Englund, and E. Waks, Optica 7, 291 (2020).
  2. C. Toninelli, I. Gerhardt, A. S. Clark et al. (Collaboration), Nat. Mater. 20, 1615 (2021).
  3. S. Adhikari, R. Smit, and M. Orrit, J. Phys. Chem. C 128, 3 (2024).
  4. A. H. Safavi-Naeini, D. van Thourhout, R. Baets, and R. Van Laer, Optica 6, 213 (2019).
  5. N. R. Jungwirth, B. Calderon, Y. Ji, M. G. Spencer, M.E. Flatte, and G.D. Fuchs, Nano Lett. 16, 6052 (2016).
  6. S. G. Bishop, J. P. Hadden, F. D. Alzahrani, R. Hekmati, D. L. Huffaker, W. W. Langbein, and A. J. Bennett, ACS Photonics 7, 1636 (2020).
  7. S. P. Feofilov, A. B. Kulinkin, and N. M. Khaidukov, J. Lumin. 224, 117284 (2020).
  8. R. Smit, A. Tebyani, J. Hameury, S. J. van der Molen, and M. Orrit, Nat. Commun. 14, 7960 (2023).
  9. A. O. Savostianov, I. Yu. Eremchev, T. Plakhotnik, and A. V. Naumov, Phys. Rev. B 110, 045430 (2024).
  10. A. S. Barker and A. J. Sievers, Rev. Mod. Phys. 47, (1975).
  11. H. R. Schober and B. B. Laird, Phys. Rev. B 44, 6746 (1991).
  12. I. S. Osad’ko, Phys. Rep. 206, 43 (1991).
  13. I. S. Osad’ko, Selective Spectroscopy of Single Molecules, Springer, Berlin, N.Y. (2003).
  14. D. Hsu and J. L. Skinner, J. Chem. Phys. 81, 1604 (1984).
  15. M. A. Krivoglaz, Sov. Phys. Solid State 6, 1340 (1964).
  16. D. E. McCumber, Phys. Rev. 133, A163 (1964).
  17. A. V. Naumov, Y. G. Vainer, and L. Kador, Phys. Rev. B 79, 132201 (2009).
  18. S. J. Zilker, L. Kador, J. Friebel, Yu. G. Vainer, M. A. Kol’chenko, and R. I. Personov, J. Chem. Phys. 109, 6780 (1998).
  19. M. Knyazev, K. Karimullin, and A. Naumov, Phys. Status Solidi (RRL) 11, 1600414 (2017).
  20. M. Orrit, J. Bernard, and R. I. Personov, J. Phys. Chem. 97, 10256 (1993).
  21. B. Frick, D. Richter, and S. Trevino, Physica A 201, (1993).
  22. P. D. Mannheim, Phys. Rev. 165, 1011 (1968).
  23. E. Barkai, Y. Jung, and R. Silbey, Annu. Rev. Phys. Chem. 55, 457 (2004).
  24. G. J. Small, Chem. Phys. Lett. 57, 501 (1978).
  25. E. Leontidis, U. W. Suter, M. Schuetz, H.-P. Luethi, A. Renn, and U. P. Wild, J. Am. Chem. Soc. 117, 7493 (1995).
  26. I. Renge, J. Phys. Chem. B 108, 10596 (2004).
  27. V. G. Karpov, M. I. Klinger, and F. N. Ignat’ev, Sov. Phys. JETP 57, 439 (1983).
  28. P. Esquinazi, Tunneling Systems in Amorphous and Crystal line Solids, Springer, Berlin (1998).
  29. S. A. Kulagin and I. S. Osadko, Phys. Status Solidi (b) 110, 57 (1982).
  30. N. L. Naumova, A. V. Naumov, A. N. Nikitina, I. A. Vasil’eva, Zh. A. Krasnaya, and Yu. V. Smirnova, Opt. Spectrosc. 92, 383 (2002).
  31. V. N. Novikov, A. P. Sokolov, B. Strube, N. V. Surovtsev, E. Duval, and A. Mermet, J. Chem. Phys. 107, 1057 (1997).
  32. K. R. Karimullin, A. I. Arzhanov, I. Y. Eremchev, B. A. Kulnitskiy, N. V. Surovtsev, and A. V. Naumov, Laser Phys. 29, 124009 (2019).
  33. A. I. Arzhanov, А. О. Savostianov, К. А. Magaryan, К. R. Karimullin, and A. V. Naumov, Photonics Russia 15, 622 (2021).
  34. I. Yu. Eremchev, A. Yu. Neliubov, K. N. Boldyrev, V. G. Ralchenko, V. S. Sedov, L. Kador, and A. V. Naumov, J. Phys. Chem. C 125, 17774 (2021).
  35. А. О. Savostianov, I. Yu. Eremchev, and А. V. Naumov, Photonics Russia 17, 508 (2023).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Российская академия наук

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».