On exchange-correlation energy in DFT scenarios

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Motivated by the considerable importance of material properties in modern condensed matter physics research, and using techniques of the Ne-electron systems in terms of the electron density nσe (r) needed to obtain the ground-state energy Ee0 in Density Functional theory scenarios, we approach the exchange-correlation energy Exc [nσe(r)] by considering the interelectronic position corrections Δr↑↑,↑↓ x = |δr↑↑ − δr↑↓| and Δr eiej6≠i c = λc |r − r′|−(Ne−1)−1 corresponding to the spin and the Coulomb correlation effects, respectively, through the electron-electron potential energy. Exploiting such corrections, we get approximate expressions for the exchange Ex [nσe] and the correlation Ec [nσe] functional energies which could be interpreted in terms of magnetic and electric dipole potential energies associated with the charge density nσe (r) described by inversesquare potential behaviors. Based on these arguments, we expect that such obtained exchange-correlation functional energy could be considered in the Local Density Approximation functional as an extension to frame such interelectronic effects.

About the authors

A. Belhaj

ESMaR, Faculty of Sciences, Mohammed V University in Rabat

Author for correspondence.
Email: ennadifs@gmail.com
Rabat, Morocco

S. E Ennadifi

LHEP-MS, Faculty of Sciences, Mohammed V University in Rabat

Email: ennadifs@gmail.com
Rabat, Morocco

References

  1. D.R. Hartree, TheWave Mechanics of an Atom with a Non-Coulomb Central Field, Part Theory and Methods. Mathematical Proceedings of the Cambridge Physical Society 24, 89 (1928).
  2. V. Fock, Zeitschrift f¨ur Physik 61, 126 (1930).
  3. J.C. Slater, Phys. Rev. 81(3), 385 (1951).
  4. L.H. Thomas, Mathematical Proceedings of the Cambridge Philosophical Society 23(5), 542 (1927).
  5. F. Enrico, Rend. Accad. Naz. Lincei. 6, 602 (1927).
  6. W. Kohn and L. J. Sham, Phys. Rev. 140(4A), 1133 (1965).
  7. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).
  8. M. Born and R. Oppenheimer, Ann. Physik 84, 457(1927).
  9. D. Bouaziz and T. Birkandan, Ann. Phys. (NY) 387, 62 (2017).
  10. C.A. de Lima Ribeiro, C. Furtado, and F. Moraes, Mod. Phys. Lett. A 20, 1991 (2005).
  11. M. Sreelakshmi and R. Akhilesh, J. Phys. G: Nucl. Part. Phys. 50, 073001 (2023).
  12. H.E. Camblong and C.R. Ordonez, Phys. Rev. D 68, 125013 (2003).
  13. T. Jenke, G. Cronenberg, J. Burgd¨orfer, L.A. Chizhova, P. Geltenbort, A.N. Ivanov, T. Lauer, T. Lins, S. Rotter, H. Saul, U. Schmidt, and H. Abele, Phys. Rev. Lett. 112, 151105 (2014).
  14. D. Bagayoko, AIP Advances. 4(12), 127104 (2014).
  15. A.D. Becke, J. Chem. Phys. 104, 1040 (1996).

Copyright (c) 2024 Российская академия наук

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies