Atomnyy chip i difraktsionnaya reshetka dlya lazernogo okhlazhdeniya atomov itterbiya

Abstract

В работе изучена возможность использования атомного чипа и дифракционной решетки с целью формирования компактной магнитооптической ловушки для нейтральных атомов иттербия, которая может быть использована при постройке компактных атомных интерферометров и оптических стандартов частоты на ультрахолодных атомах. Для определения первоначальных требований к упомянутым элементам нами проведен эксперимент по лазерному охлаждению изотопов 171Yb и 174Yb в первичной магнитооптическую ловушку. Представлены результаты расчетов конструкции атомного чипа, формирующего градиент магнитного поля вплоть до 60 Гс/см. Рассчитаны оптимальные конфигурации дифракционной решетки, позволяющие формировать как первичную, так и вторичную магнитооптическую ловушку.

References

  1. H. Häffner, C. F. Roos, and R. Blatt, Phys. Rep. 469, 155 (2008).
  2. Boulder Atomic Clock Optical Network (BACON) Collaboration, Nature 591, 564 (2021).
  3. M. G. Tarallo, T. Mazzoni, N. Poli, D. V. Sutyrin, X. Zhang, and G. M. Tino, Phys. Rev. Lett. 113, 023005 (2014).
  4. A.D. Ludlow, M.M. Boyd, J. Ye, E. Peik, and P.O. Schmidt, Rev. Mod. Phys. APS 87, 637 (2015).
  5. C. J. Kennedy, G. A. Siviloglou, H. Miyake, W. C. Burton, and W. Ketterle, Phys. Rev. Lett. 111, 225301 (2013).
  6. I. Bloch, J. Dalibard, and S. Nascimbene, Nat. Phys. 8, 267 (2012).
  7. V. Menoret, P. Vermeulen, N. Le Moigne, S. Bonvalot, P. Bouyer, A. Landragin, and B. Desruelle, Sci. Rep. 8, 1 (2018).
  8. F. Migliaccio, M. Reguzzoni, K. Batsukh, G. M. Tino, G. Rosi, F. Sorrentino, C. Braitenberg, T. Pivetta, D. F. Barbolla, and S. Zoffoli, Surv. Geophys. 40, 1029 (2019).
  9. I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar, R. Geiger, and A. Landragin, Phys. Rev. Lett. 116, 183003 (2016).
  10. S.-Y. Dai, F. S. Zheng, K. Liu, W.-L. Chen, Y.-G. Lin, T.-C. Li, and F. Fang, Chin. Phys. B 30, 13701 (2021).
  11. P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, Phys. Rev. Lett. 110, 171102 (2013).
  12. M. A. Norcia, J. R. K. Cline, and J. K. Thompson, Phys. Rev. A. 96, 042118 (2017).
  13. B. Canuel, A. Bertoldi, L. Amand et al. (Collaboration), Sci. Rep. 8, 14064 (2018).
  14. L. Hu, N. Poli, L. Salvi, and G. M. Tino, Phys. Rev. Lett. 119, 263601 (2017).
  15. L. Hu, E. Wang, L. Salvi, J. N. Tinsley, G. M. Tino, and N. Poli, Class. Quantum Gravity 37(1), 014001 (2019).
  16. V. S. Letokhov and B. D. Pavlik, Appl. Phys. 9, 229 (1976).
  17. H. Katori, M. Takamoto, V. G. Pal’Chikov, and V. D. Ovsiannikov, Phys. Rev. Lett. 91, 173005 (2003).
  18. G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, Phys. Rev. Lett. 82, 4619 (1999).
  19. N. Poli, M. Schioppo, S. Vogt, St. Falke, U. Sterr, Ch. Lisdat, and G. M. Tino, Appl. Phys. B. Springer 117, 1107 (2014).
  20. J. Reichel and V. Vuletic, Atom chips, John Wiley & Sons, Berlin (2011).
  21. J. D. Weinstein and K. G. Libbrecht, Phys. Rev. A 52(5), 4004 (1995).
  22. J. A. Kim, K.I. Lee, and H. R. Noh, Opt. Lett. 22, 117 (1997).
  23. M. Vangeleyn, P. F. Griffin, E. Riis, and A. S. Arnold, Opt. Express 17, 13601 (2009).
  24. W. R. McGehee, W. Zhu, and D. S. Barker, New J. Phys. 23, 13021 (2021).
  25. L. Chen, C. J. Huang, and X. B. Xu, Phys. Rev. Appl. 17(3), 34031 (2022).
  26. D. Ai, H. Qiao, and S. Zhang, Chin. Physics B 29(9), 090601 (2020).
  27. Z. Hu and H. J. Kimble, Opt. Lett. 19, 1888 (1994).
  28. R. Maruyama, R. H. Wynar, and M. V. Romalis, Phys. Rev. A 68(1), 011403 (2003).
  29. A. Kawasaki, B. Braverman, Q. Yu, and V. Vuletic, J. Phys. B: At. Mol. 48(15), 155302 (2015).
  30. S. Wildermuth, P. Krüger, C. Becker, M. Brajdic, S. Haupt, A. Kasper, R. Folman, and J. Schmiedmayer, Phys. Rev. A 69, 030901 (2004).
  31. J. Reichel, W. Hansel, and T. W. Hünsch, Phys. Rev. Lett. 83(17), 3398 (1999).
  32. A. E. Afanasiev, A. S. Kalmykov, R. V. Kirtaev, A. A. Kortel, P. I. Skakunenko, D. V. Negrov, and V. I. Balykin, Opt. Laser Technol. 148, 107698 (2022).
  33. A. E. Afanasiev, D. V. Bykova, P. I. Skakunenko, and V. I. Balykin, JETP Lett. 115, 509 (2022).
  34. D. V. Bykova, A. E. Afanasiev, and V. I. Balykin, JETP Lett. 118(1), 14 (2023).
  35. C.C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, Nat. Nanotechnol. 8(5), 321 (2013).
  36. X. Sun, W.D.A. Rickard, B.M. Sparkes, B. R. White, R. F. Offer, A.N. Luiten, and C. N. Ironside, 29(23), 37733 (2021).
  37. O. S. Burrow, R. J. Fasano, W. Brand, M. W. Wright, W. Li, A.D. Ludlow, E. Riis, P.F. Griffin, and A. S. Arnold, arXiv preprint, arXiv:2306.17080 (2023).
  38. S. Bondza, C. Lisdat, S. Kroker, and T. Leopold, Phys. Rev. Appl. 17, 044002 (2022).
  39. M. Vangeleyn, P. F. Griffin, E. Riis, and A. S. Arnold, Opt. Lett. 35, 3453 (2010).
  40. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1068 (1995).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Российская академия наук

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).