Vliyanie kontsentratsii kobal'ta na magnitnye svoystva nanokristallov semeystva Co1−xMgxFe2O4

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Синтезированы наночастицы Co1−xMgxFe2O4 с x, равным 0, 0.2, 0.4, 0.6, 0.8 и 1.0. При всех значениях x они являются нанокристаллами со структурой феррита кобальта и средним линейным размером (56±3) нм. На основе анализа спектров эффекта Мессбауэра установлено, что ионы Co2+ занимают только октаэдрические позиции при всех значениях x. Полученная экспериментально зависимость намагниченности наночастиц от x соответствует зависимости, рассчитанной с помощью эффекта Мессбауэра, кроме образца с x = 1.0. Эффективная константа кристаллической магнитной анизотропии, оцененная для 0 K из анализа температурных зависимостей коэрцитивной силы, уменьшается от 5.27 × 106 при x = 0 до 1.29 × 106 эрг/см3, при x = 0.8 несколько быстрее, чем по линейному закону, и резко падает до 4 × 104 эрг/см3 при x = 1.0.

References

  1. L. Neel, C. R. Acad. Sci. 230, 375 (1950).
  2. Я. Смит, Х. Вейн, Ферриты. Физические свойства и практические применения, ИЛ, М. (1962)
  3. M. I. M. Omer, A. A. Elbadawi, and O. A. Yassin, J. Appl. Ind. Sci. 1, 20 (2013).
  4. L. M. Corliss and J. M. Hastings, Phys. Rev. 90, 1013 (1953).
  5. D. H. Manh, T. D. Thanh, T. L. Phan, and D. S. Yang, RSC Adv. 13, 8163 (2023).
  6. N. Hosni, K. Zehani, T.Bartoli, L. Bessais, and H. Maghraoui-Meherzi, J. All. Com. 694, 1295 (2017).
  7. С. В. Дьяченко, К. Д. Мартинсон, И. А. Черепкова, А. И. Жерновой, Журнал прикладной химии 89, 417 (2016)
  8. S. Maensiri, M. Sangmanee, and A. Wiengmoon, Nanoscale Res. Lett. 4, 221 (2009).
  9. S. I. Hussein, A. S. Elkady, M. M. Rashad, A. G. Mostafa, and R. M. Megahid, J. Magn. Magn. Mater. 379, 9 (2015).
  10. А. И. Жерновой, А. А. Комлев, С. В. Дьяченко, Журнал технической физики 86, 146 (2016)
  11. S. Sarmah, K. P. Patra, P. K. Maji, S. Ravi, and T. Bora, Ceram. Inter. 49, 1444 (2023).
  12. Q. Lin, Y. He, J. Lin, F. Yang, L. Wang, and J. Dong, J. Magn. Magn. Mater. 469, 89 (2019).
  13. A. G. Abraham, A. Manikandan, E. Manikandan, S. Vadivel, S. K. Jaganathan, A. Baykal, and P. S. Renganathan, J. Magn. Magn. Mater. 452, 380 (2018).
  14. Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data. User’s Manual. Bruker AXS, Karlsruhe, Germany (2008).
  15. С. Крупичка, Физика ферритов и родственных им магнитных окислов, Мир, М. (1976), 345 с.
  16. M. Al-Maashani, A. M. Gismelseed, K. A. M. Khalaf, A. A. Yousif, A. D. Al-Rawas, H. M. Widatallah, and M. E. Elzain, Hyperfine Interact. 239, 15 (2018).
  17. L. Kumar, P. Kumar, A. Narayan, and M. Kar, International Nano Lett. 3, 8 (2013).
  18. S. V. Stolyar, R. N. Yaroslavtsev, A. V. Tyumentseva, S. V. Komogortsev, E. S. Tyutrina, A. T. Saitova, Y. V. Gerasimova, D. A. Velikanov, M. V. Rautskii, and R. S. Iskhakov, J. Phys. Chem. C 126(17), 7510 (2022).
  19. T. Kahmann, E. L. Roscha, K. Enpukub, T. Yoshidab, and F. Ludwiga, J. Magn. Magn. Mater. 519, 167402 (2021)
  20. E. C. Stoner and E. P. Wohlfarth, Phil. Trans. Royal Soc. A: Math., Phys., Eng. Sci. 240, 599 (1948).
  21. J. Garcia-Otero, A. J. Garcia-Bastida, and J. Rivas, J. Magn. Magn. Mater. 189, 377 (1998).
  22. С. В. Комогорцев, Т. Н. Патрушева, Д. А. Балаев, Е. А. Денисова, И. В. Пономаренко, Письма в ЖТФ 35, 19, 6 (2009)
  23. С. В. Комогорцев, С. В. Семенов, С. Н. Варнаков, Д. А. Балаев, ФТТ 64, 22 (2022)
  24. Н. С. Акулов, Л. В. Киренский, ЖТФ 9(13), 1145 (1939)
  25. S. Yoon, Hyperfine Interact 231, 21 (2015).

Copyright (c) 2024 Российская академия наук

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies