Effektivnaya zagruzka atomnogo chipa iz nizkoskorostnogo atomnogo puchka

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

В работе исследованы различные режимы загрузки магнито-оптической ловушки (МОЛ), сформированной вблизи атомного чипа, на примере атомов 87Rb. Исследована загрузка из тепловых атомных паров и из низкоскоростного атомного пучка. При использовании атомного пучка продемонстрирована возможность контроля загрузки магнито-оптической ловушки пространственным управлением атомного пучка. Это позволило увеличить скорость загрузки атомов в магнито-оптической ловушке при сохранении ультравысокого вакуума в области атомного чипа. При оптимальных режимах загрузки максимальное количество атомов в МОЛ составило значение 4.9 × 107 атомов. При этом, измеренное время жизни атомов в МОЛ составило значение 4.1 с.

References

  1. C. L. Degen, F. Reinhard, and P. Cappellaro, Rev. Mod. Phys. 89, 035002 (2017).
  2. G. M. Tino, Quantum Sci. Technol. 6, 024014 (2021).
  3. G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, Phys. Rev. Lett. 82, 4619 (1999).
  4. D. Provorchenko, D. Tregubov, D. Mishin, M. Yaushev, D. Kryuchkov, V. Sorokin, K. Khabarova, A. Golovizin, and N. Kolachevsky, Atoms 11, 30 (2023).
  5. E. T. Davletov, V. V. Tsyganok, V. A. Khlebnikov, D. A. Pershin, D. V. Shaykin, and A. V. Akimov, Phys. Rev. A 102, 011302 (2020).
  6. B. B. Zelener, S. Y. Bronin, E. V. Vilshanskaya, E. V. Vikhrov, K. P. Galstyan, N. V. Morozov, S. A. Saakyan, V. A. Sautenkov, and B. V. Zelener, Quantum Electron. 52, 523 (2022).
  7. D. B. Tretyakov, V. M. Entin, E. A. Yakshina, I. I. Beterov, and I. I. Ryabtsev, Quantum Electron. 52, 513 (2022).
  8. D. Becker, M. D. Lachmann, S. T. Seidel, H. Ahlers, A. N. Dinkelaker, J. Grosse, O. Hellmig, H. Muntinga, V. Schkolnik, and T. Wendrich, Nature 562, 391 (2018).
  9. D. C. Aveline, J. R. Williams, E. R. Elliott, C. Dutenhoffer, J. R. Kellogg, J. M. Kohel, N. E. Lay, K. Oudrhiri, R. F. Shotwell, N. Yu, and R. J. Thompson, Nature 582, 193 (2020).
  10. D. Li, W. He, S. Shi, B. Wu, Y. Xiao, Q. Lin, and L. Li, Sensors 23, 5089 (2023).
  11. J. Rudolph, W. Herr, C. Grzeschik, T. Sternke, A. Grote, M. Popp, D. Becker, H. Muntinga, H. Ahlers, A. Peters, C. Lammerzahl, K. Sengstock, N. Gaaloul, W. Ertmer, and E. .M. Rasel, New J. Phys. 17, 065001 (2015).
  12. J. Reichel, Applied Physics B 74, 469 (2002).
  13. J. Reichel, W. Hansel, and T. W. Hansch, Phys. Rev. Lett. 83, 3398 (1999).
  14. S. Wildermuth, P. Kruger, C. Becker, M. Brajdic, S. Haupt, A. Kasper, R. Folman, and J. Schmiedmayer, Phys. Rev. A 69, 030901 (2004).
  15. A. M. Steane, M. Chowdhury, and C. J. Foot, JOSA B 9, 2142 (1992).
  16. A. E. Afanasiev, A. S. Kalmykov, R. V. Kirtaev, A. A. Kortel, P. I. Skakunenko, D. V. Negrov, and V. I. Balykin, Opt. Laser Technol. 148, 107698 (2022).
  17. Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
  18. A. E. Afanasiev, D. V. Bykova, P. I. Skakunenko, and V. I. Balykin, JETP Lett. 115, 509 (2022).
  19. D. Bykova, A. Afanasiev, and V. Balykin, JETP Lett. 118, 14 (2023).
  20. D. Sesko, T. Walker, C. Monroe, A. Gallagher, and C. Wieman, Phys. Rev. Lett. 63, 961 (1989).
  21. T. Walker and P. Feng, Adv. Atom. Mol. Opt. Phys. 34, 125 (1994).
  22. L. Marcassa, V. Bagnato, Y. Wang, C. Tsao, J. Weiner, O. Dulieu, Y. B. Band, and P. S. Julienne, Phys. Rev. A 47, R4563 (1993).

Copyright (c) 2024 Российская академия наук

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies