Vosstanovlenie po trebovaniyu volnovoy formy messbauerovskogo gamma-fotona posredstvom zaderzhannoy akusticheski indutsirovannoy prozrachnosti

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A method has been proposed to reconstruct at arbitrary time the spectral–temporal characteristics of a
14.4-keV single-photon wave packet that is emitted by a 57Co source and is resonantly absorbed in the
medium of 57Fe nuclei. The method is based on the frequency separation of the field emitted by the source
and resonance nuclear polarization induced by this field by means of delayed acoustically induced transparency
of the absorber, which appears after the activation of oscillations of the absorber at the corresponding
frequency and amplitude. The proposed method has been compared to the known quantum-optical memory
methods and methods of nuclear polarization control in the gamma range. Experimental conditions have
been proposed to implement the method. It has been shown that this method allows the implementation of
the time-resolved Mössbauer spectroscopy of various media.

Авторлар туралы

I. Khayrulin

Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences

Email: khairulinir@ipfran.ru
Nizhny Novgorod, 603950 Russia

E. Radionychev

Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: khairulinir@ipfran.ru
Nizhny Novgorod, 603950 Russia

Әдебиет тізімі

  1. A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 74, 2447 (1995).
  2. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
  3. D. Budker, D. Kimball, S. Rochester, and V. Yashchuk, Phys. Rev. Lett. 83, 1767 (1999).
  4. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, Phys. Rev. Lett. 82, 5229 (1999).
  5. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, Phys. Rev. Lett. 88, 023602 (2002).
  6. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Phys. Rev. Lett. 90, 113903 (2003).
  7. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003).
  8. A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichen eld, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, Nature 472, 69 (2011).
  9. H. Xionga and Y. Wu, Appl. Phys. Rev. 5, 031305 (2018).
  10. E. Saglamyurek, T. Hrushevskyi, A. Rastogi, K. Heshami, and L. J. LeBlanc, Nat. Photonics 12, 774 (2018).
  11. A. Rastogi, E. Saglamyurek, T. Hrushevskyi, S. Hubele, and L. J. LeBlanc, Phys. Rev. A 100, 012314 (2019).
  12. M. F. Yanik, W. Suh, Zh. Wang, and Sh. Fan, Phys. Rev. Lett. 93, 233903 (2004).
  13. Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, Opt. Express 14, 2317 (2006).
  14. T. Wang, Y.-Q. Hu, Ch.-G. Du, and G.-L. Long, Opt. Express 27, 7344 (2019).
  15. R. Y. M. Manjappa, Y. K. Srivastava, and R. Singh, Appl. Phys. Lett. 111, 021101 (2017).
  16. Zh. Zhao, H. Zhao, R. T. Ako, J. Zhang, H. Zhao, and Sh. Sriram, Opt. Express 27, 26459 (2019).
  17. O. Kocharovskaya and Ya. I. Khanin, Sov. Phys. JETP. 63, 945 (1986).
  18. K. J. Boller, A. I˙mamoˇglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991).
  19. A. I. Lvovsky, B. C. Sanders, and W. Tittel, Nat. Photonics 3, 706 (2009).
  20. M. Afzelius, N. Gisin, and H. de Riedmatten, Phys. Today 68(12), 42 (2015).
  21. T. Chaneli'ere, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, Nature 438, 833 (2005).
  22. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, Phys. Rev. Lett. 95, 63601 (2005).
  23. K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, Nat. Photonics 4, 218 (2010).
  24. K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, Phys. Rev. Lett. 107, 053603 (2011).
  25. K. Reim, J. Nunn, X.-M. Jin, P. Michelberger, T. Champion, D. England, K. Lee, W. Kolthammer, N. Langford, and I. Walmsley, Phys. Rev. Lett. 108, 263602 (2012).
  26. M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, Phys. Rev. A 79, 052329 (2009).
  27. C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, Nature 469, 508 (2011).
  28. E. Saglamyurek, N. Sinclair, J. Jin, J. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler, and W. Tittel, Phys. Rev. Lett. 108, 083602 (2012).
  29. M. K. Kim and R. Kachru, Opt. Lett. 14, 423 (1989).
  30. D. L. McAuslan, P. M. Ledingham, W. R. Naylor, S. E. Beavan, M. P. Hedges, M. J. Sellars, and J. J. Longdell, Phys. Rev. A 84, 022309 (2011).
  31. V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chaneliere, and J.-L. Le Gouet, New J. Phys. 13, 093031 (2011).
  32. S. A. Moiseev and S. Kroll, Phys. Rev. Lett. 87, 173601 (2001).
  33. G. Hetet, M. Hosseini, B. M. Sparkes, D. Oblak, P. K. Lam, and B. C. Buchler, Opt. Lett. 33, 2323 (2008).
  34. G. Hetet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, Phys. Rev. Lett. 100, 23601 (2008).
  35. G. Hetet, M. Hosseini, B. M. Sparkes, D. Oblak, P. K. Lam, and B. C. Buchler, Opt. Lett. 33, 2323 (2008).
  36. F. Vagizov, V. Antonov, Y. V. Radeonychev, R. N. Shakhmuratov, and O. Kocharovskaya, Nature 508, 80 (2014).
  37. I. R. Khairulin, Y. V. Radeonychev, and O. Kocharovskaya, Sci. Rep. 12, 20270 (2022).
  38. R. Coussement, Y. Rostovtsev, J. Odeurs, G. Neyens, H. Muramatsu, S. Gheysen, R. Callens, K. Vyvey, G. Kozyre, P. Mandel, R. Shakhmuratov, and O. Kocharovskaya, Phys. Rev. Lett. 89, 107601 (2002).
  39. R. N. Shakhmuratov, F. G. Vagizov, J. Odeurs, M. O. Scully, and O. Kocharovskaya, Phys. Rev. A 80, 063805 (2009).
  40. K. P. Heeg, J. Haber, D. Schumacher, L. Bocklage, H.-C. Wille, K. S. Schulze, R. Loetzsch, I. Uschmann, G. G. Paulus, R.Ru¨ er, R. Rohlsberger, and J. Evers, Phys. Rev. Lett. 114, 203601 (2015).
  41. Y. V. Radeonychev, I. R. Khairulin, and F. G. Vagizov, Phys. Rev. Lett. 124, 163602 (2020).
  42. Y. V. Radeonychev, I. R. Khairulin, and O. Kocharovskaya, JETP Lett. 114(12), 729 (2021).
  43. P. Helisto, I. Tittonen, M. Lippmaa, and T. Katila, Phys. Rev. Lett. 66, 2037 (1991).
  44. I. Tittonen, M. Lippmaa, P. Helisto, and T. Katila, Phys. Rev. B 47, 7840 (1993).
  45. R. N. Shakhmuratov, F. G. Vagizov, and O. Kocharovskaya, Phys. Rev. A 84, 043820 (2011).
  46. R. N. Shakhmuratov, F. G. Vagizov, and O. Kocharovskaya, Phys. Rev. A 87, 013807 (2013).
  47. Yu. V. Shvyd'ko, T. Hertrich, U. van Bu¨rck, E. Gerdau, O. Leupold, J. Metge, H. D.Ruter, S. Schwendy, G. V. Smirnov, W. Potzel, and P. Schindelmann, Phys. Rev. Lett. 77, 3232 (1996).
  48. G. V. Smirnov, U. van Burck, J. Arthur, S. L. Popov, A. Q. R. Baron, A. I. Chumakov, S. L.Ruby, W. Potzel, and G. S. Brown, Phys. Rev. Lett. 77, 183 (1996).
  49. G. V. Smirnov and W. Potzel, Hyper ne Interact. 123/124, 633 (1999).
  50. R. N. Shakhmuratov, F. G. Vagizov, V. A. Antonov, Y. V. Radeonychev, M. O. Scully, and O. Kocharovskaya, Phys. Rev. A 92, 023836 (2015).
  51. X. Zhang, W.-T. Liao, A. Kalachev, R. N. Shakhmuratov, M. O. Scully, and O. Kocharovskaya, Phys. Rev. Lett. 123, 250504 (2019).
  52. V. A. Antonov, Y. V. Radeonychev, and O. Kocharovskaya, Phys. Rev. A 92, 023841 (2015).
  53. I. R. Khairulin, V. A. Antonov, Y. V. Radeonychev, and O. Kocharovskaya, Phys. Rev. A 98, 043860 (2018).
  54. I. R. Khairulin, Y. V. Radeonychev, V. A. Antonov, and O. Kocharovskaya, Sci. Rep. 11, 7930 (2021).
  55. G. V. Smirnov, Hyper ne Interact. 123-124, 31 (1999).
  56. M¨ossbauer Spectroscopy, Springer-Verlag Berlin Heidelberg (2013); DOI: https://doi.org/10.1007/978-3-642-32220-4.
  57. Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.124.163602.

© Российская академия наук, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>