Zavisimost' skorosti relaksatsii kogerentnykh sostoyaniy ot chisla Dependence of the Relaxation Rate of Coherent States on the Number of Correlated Spins and the Order of Coherence

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The relaxation of the components of the multiple-quantum NMR spectrum of a solid under the effect of the dipole–dipole interactions during the evolution period is considered. It is taken into account that clusters of dynamically correlated spins of different sizes are formed in the preparatory period, and their degradation depends on their size and coherence order. To calculate the size distribution function of clusters and their degradation function, a physical model including relaxation processes is developed. Using this model, an analytical result for a multiple-quantum spectrum is obtained. Agreement is obtained between the theoretical and experimental dependences of the coherence degradation rates in adamantane scaled by the square root of the average cluster size. The parameters of the above functions are found from the comparison of these dependences.

About the authors

V. E Zobov

Kirensky Institute of Physics, Federal Research Center KSC, Siberian Branch, Russian Academy of Sciences, 660036, Krasnoyarsk, Russia

Email: ya-andylun2012@yandex.ru

A. A Lundin

Semenov Institute of Chemical Physics, Russian Academy of Sciences, 117977, Moscow, Russia

Author for correspondence.
Email: ya-andylun2012@yandex.ru

References

  1. P. Gaspard, From dynamical system theory to nonequilibrium thermodynamics, Symposium Henri Poincare, Proceedings, ed. by P. Gaspard, M. Henneaux, and F. Lambert, International Solvay Institute for Physics and Chemistry, Brussels (2007), p. 97.
  2. Д. Прескилл, Квантовая информация и квантовые вычисления, НИЦ "Регулярная и хаотическая динамика", М., Ижевск (2008), т. 1.
  3. D. Suter and G. A. A'lvarez, Rev. Mod. Phys. 88, 041001 (2016).
  4. L. Pezze, A. Smerzi, M. K. Oberthaler, R. Schmied, and P. Treutlein, Rev. Mod. Phys. 90, 035005 (2018).
  5. J. Preskill, Quantum 2, 79 (2018).
  6. Bin Cheng, Xiu-Hao Deng, Xiu Gu, Yu He et al. (Collaboration), arXiv: 2303.04061 (2023).
  7. T. Kusumoto, K. Mitarai, K. Fujii, M. Kitagawa, and M. Negoro, npj Quantum Inf. 7, 94 (2021).
  8. J. Baum, M. Munovitz, A. N. Garroway, and A. Pines, J. Chem. Phys. 83, 2015 (1985).
  9. Р. Эрнст, Дж. Боденхаузен, А. Вокаун, ЯМР в одном и двух измерениях, Мир, М. (1990).
  10. H. G. Krojanski and D. Suter, Phys. Rev. Lett. 93, 090501 (2004).
  11. H. G. Krojanski and D. Suter, Phys. Rev. A 74, 062319 (2006).
  12. G. Cho, P. Cappelaro, D. G. Cory, and C. Ramanathan, Phys. Rev. B 74, 224434 (2006).
  13. C. M. Sanchez, R. H. Acosta, P. R. Levstein, H. M. Pastawski, and A. K. Chattah, Phys. Rev. A 90, 042122 (2014).
  14. G. A. A'lvarez and D. Suter, Phys. Rev. A 84, 012320 (2011).
  15. F. D. Dom'ınguez, M. C. Rodr'ıguez, R. Kaiser, D. Suter, and G. A. Alvarez, Phys. Rev. A 104, 012402 (2021).
  16. C. M. Sanchez, A. K. Chattah, and H. M. Pastawski, Phys. Rev. A 105, 052232 (2022).
  17. A. Fedorov and L. Fedichkin, J. Phys.: Condens. Matter 18, 3217 (2006).
  18. А. А. Лундин, Б. Н. Провоторов, ЖЭТФ 70, 1047 (1976).
  19. В. Е. Зобов, А. А. Лундин, ЖЭТФ 139, 519 (2011).
  20. В. Е. Зобов, А. А. Лундин, ЖЭТФ 130, 1047 (2006).
  21. В. Е. Зобов, А. А. Лундин, Химическая физика 27, 18 (2008).
  22. А. А. Лундин, В. Е. Зобов, ЖЭТФ 147, 885 (2015).
  23. V. E. Zobov and A. A. Lundin, Appl. Magn. Res. 52, 879 (2021).
  24. В. Е. Зобов, А. А. Лундин, ЖЭТФ 162, 778 (2022).
  25. А. П. Прудников, Ю. А. Брычков, О. И. Маричев, Интегралы и ряды, раздел 2.3.16(2), Наука, М. (1981).
  26. S. Lacelle, S. Hwang, and B. Gerstein, J. Chem. Phys. 99, 8407 (1993).
  27. G. A. Alvarez, D. Suter, and R. Kaiser, Science 349, 846 (2015).
  28. В. Е. Зобов, ТМФ 165, 242 (2010).
  29. S. I. Doronin, E. B. Fel'dman, and A. I. Zenchuk, J. Chem. Phys. 134, 034102 (2011).

Copyright (c) 2023 Российская академия наук

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies