Mysteries of Water and Other Anomalous Liquids: “Slow” Sound and Relaxing Compressibility and Heat Capacity (Brief Review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Reasons for the existence of “fast” sound at terahertz frequencies in various liquids have been analyzed. It has been shown that the fast sound speed is described well by the conventional formula from the theory of elasticity 
, where ρ is the density of a liquid and 
 and 
 are the bulk and shear moduli at the frequency ω, respectively. The excess of the speed of fast sound over the speed of normal sound in “normal” liquids is 10–20% and is almost completely determined by the contribution of the shear modulus 
 at high frequencies, and vanishes on the Frenkel line. At the same time, the huge excess (50–120%) of the fast speed of sound over the speed of normal sound in some liquids (called “anomalous”), such as water and tellurium melt, is due mainly to the strong frequency dependence of the bulk modulus 
. Anomalously low relaxing bulk moduli were studied in our previous works for many oxide and chalcogenide glasses near smeared pressure-induced phase transitions. In anomalous liquids, smeared phase transitions also occur in a wide temperature and pressure region, which sharply reduces the bulk moduli and speeds of sound. Thus, the record large difference between speeds of fast and normal sound in anomalous liquids is due not to anomalously fast sound but to the fact that normal sound in such liquids is anomalously “slow” and bulk moduli are anomalously low. Ultrasonic studies of low- and high-density amorphous water ices show that their bulk moduli are indeed a factor of 4–5 higher than the bulk modulus of water. In addition, because of smeared phase transitions, the heat capacities of water and tellurium melt are a factor of 1.5–2 higher than those for normal liquids; i.e., anomalous liquids are characterized not only by an anomalous (nonmonotonic) behavior but also by anomalous magnitudes of physical quantities for most of the available measurement methods. A similar anomalous increase in the compressibility and heat capacity is observed for all fluids in the close vicinity of the liquid–gas critical point. In this case, anomalously fast sound is observed at terahertz frequencies, which is also due to a sharp increase in the bulk modulus 
 at high frequencies. At the same time, high compressibility and heat capacity, as well as a large excess of the speed of fast sound over the speed of normal sound, for anomalous liquids and glasses near smeared phase transitions are not necessarily due to the proximity of critical points and occur in any scenario of the smeared phase transition.

About the authors

V. V Brazhkin

Institute for High Pressure Physics, Russian Academy of Sciences, 108840, Troitsk, Moscow, Russia

Email: brazhkin@hppi.troitsk.ru

I. V Danilov

Institute for High Pressure Physics, Russian Academy of Sciences, 108840, Troitsk, Moscow, Russia

Email: brazhkin@hppi.troitsk.ru

O. B Tsiok

Institute for High Pressure Physics, Russian Academy of Sciences, 108840, Troitsk, Moscow, Russia

Author for correspondence.
Email: brazhkin@hppi.troitsk.ru

References

  1. https://water.lsbu.ac.uk/water/water_anomalies.html.
  2. P. Gallo, K. Amann-Winkel, C. Angell et al. (Collaboration), Chem. Rev. 116, 7463 (2016).
  3. W.C. R¨ontgen, Ann. Phys. Chem. 281, 91 (1892).
  4. P. Poole, F. Sciortino, U. Essman, and H.E. Stanley, Nature 360, 324 (1992).
  5. C. Huang, K.T. Wikfeldt, T. Tokushima et al. (Collaboration), Proc. Natl. Acad. Sci. USA 106, 15214 (2009).
  6. A.K. Soper, Pure Appl. Chem. 82, 1855 (2010).
  7. F. Kakinuma, T. Okada, and S. Ohno, J. Phys. Soc. Jpn. 55, 284 (1986).
  8. K. Takimoto and H. Endo, Phys. Chem. Liq 12, 141 (1982).
  9. Y. Kajihara, M. Inui, K. Ohara, and K. Matsuda, J. Phys.: Condens. Matter 32, 274001 (2020).
  10. Y. Kajihara, M. Inui, S. Hosokawa, K. Matsuda, and A.Q.R. Baron, J. Phys.: Condens. Matter 20, 494244 (2008).
  11. Y. Kajihara, M. Inui, K. Matsuda, and K. Ohara, arXiv:2201.10065.
  12. Y. Kajihara, M. Inui, K. Matsuda, T. Nagao, and K. Ohara, Phys. Rev. B 86, 214202 (2012).
  13. Y. Tsuchiya, J. Phys.: Condens. Matter 3, 3163 (1991).
  14. M. Kassem, C. Benmore, T. Usuki, K. Ohara, A. Tverjanovich, M. Bokova, V.V. Brazhkin, and E. Bychkov, J. Phys. Chem. Lett. 13, 10843 (2022).
  15. V.V. Brazhkin, S.V. Popova, and R.N. Voloshin, High Press. Res. 15, 267 (1997).
  16. Е.Ю. Тонков, Фазовые диаграммы элементов при высоком давлении, Наука, Главная редакция физико-математической литературы, М. (1979), 192 с.
  17. D.A. Young, Phase diagrams of the elements, California Univ., Livermore (USA), Lawrence Livermore Lab (1975).
  18. E. Rapoport, J. Chem. Phys. 46, 2891 (1967).
  19. E. Rapoport, J. Chem. Phys. 48, 1433 (1968).
  20. С.М. Стишов, УФН 96, 467 (1968).
  21. L. I. Aptekar, Dokl. Akad. Nauk SSSR 249, 1099 (1979).
  22. E.G. Ponyatovsky, J. Phys.: Condens. Matter 15, 6123 (2003).
  23. V.V. Brazhkin, R.N. Voloshin, and S.V. Popova, JETP Lett. 50, 424 (1989).
  24. V.V. Brazhkin, R.N. Voloshin, and S.V. Popova, High Press. Res. 4, 348 (1990).
  25. V.V. Brazhkin, R.N. Voloshin, S.V. Popova, and A.G. Umnov, Phys. Lett. A 154, 413 (1991).
  26. V.V. Brazhkin, R.N. Voloshin, S.V. Popova, and A.G. Umnov, High Press. Res. 6, 363 (1991).
  27. V.V. Brazhkin, R.N. Voloshin, S.V. Popova, and A.G. Umnov, High Press. Res. 10, 454 (1992).
  28. R.N. Voloshin, V.V. Brazhkin, and S.V. Popova, High Press. Res. 13, 51 (1994).
  29. V.V. Brazhkin, A.G. Lyapin, S.V. Popova, and R.N. Voloshin, New types of phase transitions: phenomenology, concepts, and terminology, Kluwer Academic Publishers, Dordrecht, The Netherlands (2002).
  30. V.V. Brazhkin, R.N. Voloshin, S.V. Popova, and A.G. Umnov, J. Phys.: Condens. Matter 4, 1419 (1992).
  31. A.G. Umnov, V.V. Brazhkin, S.V. Popova, and R.N. Voloshin, J. Phys.: Condens. Matter 4, 1427 (1992).
  32. A.G. Umnov and V.V. Brazhkin, High Temp.-High Press. 25, 221 (1994).
  33. Y. Katayama, T. Mizutani, W. Utsumi, O. Shimomura, M. Yamakata, and K. Funakoshi, Nature 403, 170 (2000).
  34. Y. Katayama, Y. Inamura, T. Mizutani, M. Yamakata, W. Utsumi, and O. Shimomura, Science 306, 848 (2004).
  35. G. Monaco, S. Falconi, W.A. Crichton, and M. Mezouar, Phys. Rev. Lett. 90, 255701 (2003).
  36. L. Henry, M. Mezouar, G. Garbarino, D. Sifre, G. Weck, and F. Datchi, Nature 584, 382 (2020).
  37. V.V. Brazhkin and A.G. Lyapin, J. Phys.: Condens. Matter 15, 6059 (2003).
  38. V.V. Brazhkin, Y. Katayama, Y. Inamura, M.V. Kondrin, A.G. Lyapin, S.V. Popova, and R.N. Voloshin, JETP Lett. 78, 393 (2003).
  39. V.V. Brazhkin, Y. Katayama, A.G. Lyapin, and H. Saitoh, Phys. Rev. B 89, 104203 (2014).
  40. V.V. Brazhkin, A.G. Lyapin, S.V. Popova, Y. Katayama, H. Saitoh, and W. Utsumi, J. Phys.: Condens. Matter 19, 246104 (2007).
  41. V.V. Brazhkin, Y. Katayama, M.V. Kondrin, T. Hattori, A.G. Lyapin, and H. Saitoh, Phys. Rev. Lett. 100, 145701 (2008).
  42. V.V. Brazhkin, M. Kanzaki, K. Funakoshi, and Y. Katayama, Phys. Rev. Lett. 102, 115901 (2009).
  43. V.V. Brazhkin, Y. Katayama, M.V. Kondrin, A.G. Lyapin, and H. Saitoh, Phys. Rev. B 82, 140202 (2010).
  44. V.V. Brazhkin, I. Farnan, K. Funakoshi, M. Kanzaki, Y. Katayama, A.G. Lyapin, and H. Saitoh, Phys. Rev. Lett. 105, 115701 (2010).
  45. T. Hattori, T. Kinoshita, T. Narushima, K. Tsuji, and Y. Katayama, Phys. Rev. B 73, 054203 (2006).
  46. K. Fuchizaki, N. Hamaya, and Y. Katayama, J. Phys. Soc. Jpn. 82, 033003 (2013).
  47. V.V. Brazhkin and A.G. Lyapin, JETP Lett. 78, 542 (2003).
  48. H. Tanaka, J. Chem. Phys. 153, 130901 (2020).
  49. O.B. Tsiok, V.V. Brazhkin, A.G. Lyapin, and L.G. Khvostantsev, Phys. Rev. Lett. 80, 999 (1998).
  50. V.V. Brazhkin, Y. Katayama, K. Trachenko, O.B. Tsiok, A.G. Lyapin, E. Artacho, M. Dove, G. Ferlat, Y. Inamura, and H. Saitoh, Phys. Rev. Lett. 101, 035702 (2008).
  51. T. Loerting, V.V. Brazhkin, and T. Morishita, Adv. Chem. Phys. 143, 29 (2009).
  52. V.V. Brazhkin, E. Bychkov, and O.B. Tsiok, J. Phys. Chem. B 120, 358 (2016).
  53. V.V. Brazhkin, E. Bychkov, and O.B. Tsiok, JETP 123, 308 (2016).
  54. V.V. Brazhkin, E. Bychkov, and O.B. Tsiok, Phys. Rev. B 95, 054205 (2017).
  55. V.V. Brazhkin, E. Bychkov, and O.B. Tsiok, JETP 125, 451 (2017).
  56. V.V. Brazhkin and O.B. Tsiok, Phys. Rev. B 96, 134111 (2017).
  57. O.B. Tsiok and V.V. Brazhkin, JETP 127, 1118 (2018).
  58. E. Soignard, O.B. Tsiok, A. S. Tverjanovich, A. Bytchkov, A. Sokolov, V.V. Brazhkin, C. J. Benmore, and E. Bychkov, J. Phys. Chem. B 124, 430 (2020).
  59. V.V. Brazhkin, E. Bychkov, A. S. Tver'yanovich, and O.B. Tsiok, JETP 130, 571 (2020).
  60. O.B. Tsiok, V.V. Brazhkin, A. S. Tverjanovich, and E. Bychkov, JETP 134, 51 (2022).
  61. V.V. Brazhkin, A.G. Lyapin, O.V. Stalgorova, E. L. Gromnitskaya, S.V. Popova, and O.B. Tsiok, J. Non. Cryst. Solids 212, 49 (1997).
  62. O.B. Tsiok, V.V. Bredikhin, V.A. Sidorov, and L.G. Khvostantsev, High Press. Res. 10, 523 (1992).
  63. О. Mishima, L.D. Calvert, and E.Whalley, Nature 310, 393 (1984).
  64. O.V. Stal'gorova, E. L. Gromnitskaya, V.V. Brazhkin, and A.G. Lyapin, JETP Lett. 69, 694 (1999).
  65. E. L. Gromnitskaya, O.V. Stal'gorova, V.V. Brazhkin, and A.G. Lyapin, Phys. Rev. B 64, 094205 (2001).
  66. A.G. Lyapin, O.V. Stal'gorova, E. L. Gromnitskaya, and V.V. Brazhkin, JETP 94, 283 (2002).
  67. E. L. Gromnitskaya, O.V. Stal'gorova, A.G. Lyapin, V.V. Brazhkin, and O.B. Tarutin, JETP Lett. 78, 488 (2003).
  68. E. L. Gromnitskaya, A.G. Lyapin, O.V. Stalgorova, I.V. Danilov, and V.V. Brazhkin, JETP Lett. 96, 789 (2013).
  69. E. L. Gromnitskaya, I.V. Danilov, A.G. Lyapin, and V.V. Brazhkin, Phys. Rev. B 92, 134104 (2015).
  70. T. Scopigno, G. Ruocco, and F. Sette, Rev. Mod. Phys. 77, 881 (2005).
  71. S.C. Santucci, D. Fioretto, L. Comez, A. Gessini, and C. Masciovecchio, Phys. Rev. Lett. 97, 225701 (2006).
  72. F. Gorelli, M. Santoro, T. Scopigno, M. Krisch, and G. Ruocco, Phys. Rev. Lett. 97, 245702 (2006).
  73. G. Ruocco and F. Sette, Condens. Matter Phys. 11, 29 (2008).
  74. D. Ishikawa, M. Inui, K. Matsuda, K. Tamura, S. Tsutsui, and A.Q.R. Baron, Phys. Rev. Lett. 93, 097801 (2004).
  75. Y. Kajihara, M. Inui, K. Matsuda, D. Ishikawa, S. Tsutsui, and A.Q.R. Baron, Phys. Rev. Research 5, 013120 (2023).
  76. A. Cunsolo, G. Ruocco, F. Sette, C. Masciovecchio, A. Mermet, G. Monaco, M. Sampoli, and R. Verbeni, Phys. Rev. Lett. 82, 775 (1999).
  77. A. Cunsolo, G. Pratesi, R. Verbeni, D. Colognesi, C. Masciovecchio, G. Monaco, G. Ruocco, and F. Sette, J. Chem. Phys. 114, 2259 (2001).
  78. F. Bencivenga, A. Cunsolo, M. Krisch, G. Monaco, G. Ruocco, and F. Sette, Europhys. Lett. 75, 70 (2006).
  79. G.G. Simeoni, T. Bryk, F.A. Gorelli, M. Krisch, G. Ruocco, M. Santoro, and T. Scopigno, Nat. Phys. 6, 503 (2010).
  80. M. Inui, Y. Kajihara, S. Hosokawa, A. Chiba, Y. Nakajima, K. Matsuda, J.R. Stellhorn, T. Hagiya, D. Ishikawa, H. Uchiyama, S. Tsutsui, and A.Q.R. Baron, J. Phys.: Condens. Matter 33, 475101 (2021).
  81. S. Hosokawa, Z. Phys. Chem. 235, 99 (2020).
  82. R.M. Khusnutdinoff, C. Cockrell, O.A. Dicks, A.C. S. Jensen, M.D. Le, L. Wang, M.T. Dove, A.V. Mokshin, V.V. Brazhkin, and K. Trachenko, Phys. Rev. B 101, 214312 (2020).
  83. T. Bryk, F. Gorelli, G. Ruocco, M. Santoro, and T. Scopigno, Phys. Rev. E 90, 042301 (2014).
  84. V.V. Brazhkin, Y.D. Fomin, A.G. Lyapin, V.N. Ryzhov, E.N. Tsiok, and K. Trachenko, Phys. Rev. Lett. 111, 145901 (2013).
  85. V.V. Brazhkin, Y.D. Fomin, V.N. Ryzhov, E.N. Tsiok, and K. Trachenko, Phys. A: Stat. Mech. Appl. 509, 690 (2018).
  86. Y.D. Fomin, V.N. Ryzhov, E.N. Tsiok, V.V. Brazhkin, and K. Trachenko, J. Phys.: Condens. Matter 28, 43LT01 (2016).
  87. K. Trachenko and V.V. Brazhkin, Rep. Prog. Phys. 79, 016502 (2016).
  88. V.V. Brazhkin, Y.D. Fomin, A.G. Lyapin, V.N. Ryzhov, and K. Trachenko, Phys. Rev. E 85, 031203 (2012).
  89. V.V. Brazhkin, Y.D. Fomin, A.G. Lyapin, V.N. Ryzhov, and K. Trachenko, JETP Lett. 95, 164 (2012).
  90. V.V. Brazhkin, A.G. Lyapin, V.N. Ryzhov, K. Trachenko, Y.D. Fomin, and E.N. Tsiok, Phys.-Uspekhi 55, 1061 (2012).
  91. C. Cockrell, V.V. Brazhkin, and K. Trachenko, Phys. Rep. 941, 1 (2021).
  92. Y.D. Fomin, V.N. Ryzhov, E.N. Tsiok, and V.V. Brazhkin, Sci. Rep. 5, 14234 (2015).
  93. V.V. Brazhkin, O.B. Tsiok, and Y. Katayama, JETP Lett. 89, 244 (2009).
  94. K. Suito, M. Miyoshi, T. Sasakura, and H. Fujisava, Elastic Properties of Obsidian, Vitreous SiO2, and Vitreous GeO2 Under High Pressure up to 6GPa, High-Pressure Research: Application to Earth and Planetary Sciences, ed. by Y. Syono and M.H. Manghnani, Terra Scientific Publishing Company (TERRAPUB), Tokyo/American Geophysical Union, Washington, DC. (1992), p. 219.
  95. G.H. Wolf, S. Wang, C.A. Herbst, D. J. Durben, W. F. Oliver, Z.C. Kang, and K. Halvorson, Pressure Induced Collapse of the Tetrahedral Framework in Crystalline and Amorphous GeO2, High-Pressure Research: Application to Earth and Planetary Sciences, ed. by Y. Syono and M.H. Manghnani, Terra Scientific Publishing Company (TERRAPUB), Tokyo/ American Geophysical Union, Washington, DC. (1992), p. 50.
  96. J.D. Nicholas, R.E. Youngman, S.V. Sinogeikin, J.D. Bass, and J. Kieffer, Phys. Chem. Glasses 44, 249 (2003).
  97. O. L. Anderson, Equations of state of solids for geophysics and ceramic science, Oxford University Press, Oxford, UK (1995).
  98. S.M. Antao, C. J. Benmore, B. Li, L.Wang, E. Bychkov, and J. B. Parise, Phys. Rev. Lett. 100, 115501 (2008).
  99. База данных NIST https://webbook.nist.gov/chemistry/fluid/.
  100. R. Feistel and W. Wagner, J. Phys. Chem. Ref. Data 35, 1021 (2006).
  101. F. Kakinuma and S. Ohno, J. Phys. Soc. Jpn. 56, 619 (1987).
  102. V.N. Korobenko and A.D. Rakhel, Phys. Rev. B 85, 014208 (2012).
  103. В.В. Бражкин, Письма в ЖЭТФ 112, 787 (2020).
  104. Г. Стенли, Фазовые переходы и критические явления, Мир, М. (1973), 425 c.

Copyright (c) 2023 Российская академия наук

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies