Eksitonnoe uporyadochenie v sil'no korrelirovannykh sistemakh so spinovym krossoverom

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

В рамках эффективного гамильтониана, полученного из двухзонной модели Хаббарда-Канамори, рассматриваются особенности формирования магнитной структуры и фазы экситонного бозе-конденсата локальных магнитных экситонов в сильно коррелированных системах вблизи спинового кроссовера. Обнаружено сосуществование антиферромагнетизма и экситонного конденсата и возникновение дальнего антиферромагнитного порядка вследствие экситонного упорядочения даже в отсутствие межатомного обменного взаимодействия. Рассматривается роль электрон-фононного взаимодействия.

Bibliografia

  1. N. F. Mott, The transition to the metallic state, Philos. Mag. 6(62), 287 (1961).
  2. R. S. Knox, The Theory of Excitons in Solid State Physics, ed. by F. Seitz and D. Turnbull, Academic Press, N.Y. (1963).
  3. L. V. Keldysh and Y. V. Kopaev, Soviet Phys. Solid State 6(9), p. 2219 (1965).
  4. B. A. Volkov, Y. V. Kopaev, and A. I.Rusinov, Sov. Phys. JETP 41, 952 (1975).
  5. J. Kuneˇs, J. Phys. Condens. Matter 27, 333201 (2015).
  6. J. Nasu, T. Watanabe, M. Naka, and S. Ishihara, Phys. Rev. B 93, 205136 (2016).
  7. P. Werner and A. J. Millis, Phys. Rev. Lett. 99, 126405 (2007).
  8. R. Suzuki, T. Watanabe, and S. Ishihara, Phys. Rev. B 80, 054410 (2009).
  9. L. Balents, Phys. Rev. B 62, 2346 (2000).
  10. T. Kaneko and Y. Ohta, Phys. Rev. B 90, 245144 (2014).
  11. J. Kuneˇs and P. Augustinsky', Phys. Rev. B 89, 115134 (2014).
  12. A. Sotnikov and J. Kuneˇs, Sci. Rep. 6, 30510 (2016).
  13. T. Tatsuno, E. Mizoguchi, J. Nasu, M. Naka, and S. Ishihara, J. Phys. Soc. Jpn. 85(8), 083706 (2016).
  14. G. Khaliullin, Phys. Rev. Lett. 111, 197201 (2013).
  15. C. A. Belvin, E. Baldini, I. O. Ozel, D. Mao, H. C. Po, C. J. Allington, S. Son, B. H. Kim, J. Kim, I. Hwang, J. H. Kim, J.-G. Park, T. Senthil, and N. Gedik, Nat.Commun. 12(1), 4837 (2021).
  16. K. Kitagawa and H. Matsueda, J. Phys. Soc. Jpn. 91(10), 104705 (2022).
  17. T. Feldmaier, P. Strobel, M. Schmid, P. Hansmann, and M. Daghofer, Phys. Rev. Res. 2, 033201 (2020).
  18. J. Kanamori, Prog. Theor. Phys. 30(3), 275 (1963).
  19. J. Hubbard, Proc. R. Soc. A 277(1369), 237 (1964).
  20. R. O. Zaitsev, Sov. Phys. JETP 43, 574 (1976).
  21. K. A. Chao, J. Spalek, and A. M. Oles, J. Phys. C 10(10), L271 (1977).
  22. V. A. Gavrichkov, S. I. Polukeev, and S. G. Ovchinnikov, Phys. Rev. B 95, 144424 (2017).
  23. V. V. Val'kov and S. G. Ovchinnikov, Theor. Math. Phys. 50(3), 466 (1982).
  24. S. V. Vonsovskii and M. S. Svirskii, Sov. Phys. JETP 20(5), 914 (1965).
  25. V. M. Agranovich and B. S. Toshich, JETP 26, 104 (1968).
  26. M. J. R. Hoch, S. Nellutla, J. van Tol, E. S. Choi, J. Lu, H. Zheng, and J. F. Mitchell, Phys. Rev. B 79, 214421 (2009).
  27. K. Sato, A. Matsuo, K. Kindo, Y. Kobayashi, and K. Asai, J. Phys. Soc. Jpn. 78(9), 093702 (2009).
  28. A. Ikeda, T. Nomura, Y. H. Matsuda, A. Matsuo, K. Kindo, and K. Sato, Phys. Rev. B 93, 220401(R) (2016).
  29. V. Platonov, Y. B. Kudasov, M. Monakhov, and O. Tatsenko, Phys. Solid State 54(2), 279 (2012).
  30. M. M. Altarawneh, G.-W. Chern, N. Harrison, C. D. Batista, A. Uchida, M. Jaime, D. G. Rickel, S. A. Crooker, C. H. Mielke, J. B. Betts, J. F. Mitchell, and M. J. R. Hoch, Phys. Rev. Lett. 109, 037201 (2012).
  31. M. Rotter, Z.-S. Wang, A. T. Boothroyd, D. Prabhakaran, A. Tanaka, and M. Doerr, Sci. Rep. 4, 7003 (2014).
  32. A. Ikeda, S. Lee, T. T. Terashima, Y. H. Matsuda, M. Tokunaga, and T. Naito, Phys. Rev. B 94, 115129 (2016).

Declaração de direitos autorais © Российская академия наук, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies