Issledovanie spin-orbital'nogo vzaimodeystviya v geteroperekhodakh Zno/MgxZ>n1−xO posredstvom spektroskopii spinovogo rezonansa

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Было проведено подробное исследование спин-орбитального взаимодействия в серии содержащих двумерную электронную систему гетеропереходов ZnO/MgxZn1-xO со структурой вюрцита. Константы спин-орбитального взаимодействия определялись из анализа обусловленной спин-орбитальным взаимодействием модификации одночастичного g-фактора в режиме квантового эффекта Холла. Величина g-фактора при этом с высокой точностью измерялась посредством методики электронного спинового резонанса в широких диапазонах магнитных полей и частот электромагнитного излучения. Константы спин-орбитального взаимодействия были определены для серии образцов с различной концентрацией Mg, что позволило получить зависимость константы спин-орбитального взаимодействия от двумернойплотности электронов n. Измеренная величина константы лежала в диапазоне 0.5 - 0.8 meV×˚A и до-= 0.5 мэВ ˚ ˚× A и γ = 0.12 эВ ×статочно слабо зависела от n. Аппроксимация экспериментальных данных позволила определить коэффициенты α 03A , задающие линейный и кубический по волновому вектору вклады в спин-орбитальное взаимодействие, соответственно. Эти значения были соотнесены с результатами, полученными другими научными группами.

参考

  1. M. Konig, S. Wiedmann, C. Br¨une, A. Roth, H. Buhmann, L.W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766 (2007).
  2. J. Sinova, S.O. Valenzuela, J. Wunderlich, C.H. Back, and T. Jungwirth, Rev. Mod. Phys. 87, 1213 (2015).
  3. M. Z. Hasan, and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
  4. S. Nadj-Perge, I.K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A.H. MacDonald, B.A. Bernevig, and A. Yazdani, Science 346, 602 (2014).
  5. М.И. Дьяконов, В.И. Перель, ФТТ 13(12), 3581 (1971).
  6. S. Datta and B. Das, Appl. Phys. Lett. 56 665 (1990).
  7. L.C. Lew, Y. Voon, M. Willatzen, M. Cardona, and N.E. Christensen, Phys. Rev. B 53, 10703 (1996).
  8. J.R. de Laeter, J.K. B¨ohlke, P. De Bi'evre, H. Hidaka, H. S. Peiser, K. J.R. Rosman, and P.D.P. Taylor, Pure Appl. Chem. 75, 683 (2003).
  9. M. Fanciulli (editor), Electron Spin Resonance and Related Phenomena in Low Dimensional Structures, Springer, Berlin (2009).
  10. U.K. Mishra, P. Parikh, and W. Yi-Feng, Proc. IEEE 90, 1022 (2002).
  11. K. Koike, K. Hama, I. Nakashima, G. Takada, M. Ozaki, K. Ogata, S. Sasa, M. Inoue, and M. Yano, Jpn. J. Appl. Phys. 43 L1372 (2004).
  12. K. Ellmer, J. Phys. D: Appl. Phys. 34, 3097 (2001).
  13. D.C. Look, Semicond. Sci. Technol. 20, S55 (2005).
  14. V.E. Kozlov, A.B. Van'kov, S. I. Gubarev, I.V. Kukushkin, V.V. Solovyev, J. Falson, D. Maryenko, Y. Kozuka, A. Tsukazaki, M. Kawasaki, and J.H. Smet, Phys. Rev. B 91, 085304 (2015).
  15. A.V. Shchepetilnikov, Yu.A. Nefyodov, A.A. Dremin, and I.V. Kukushkin, JETP Lett. 107, 770 (2018).
  16. V.V. Solovyev and I.V. Kukushkin, Phys. Rev. B. 96, 115131 (2017).
  17. A.B. Van'kov, B.D. Kaysin, and I.V. Kukushkin, Phys. Rev. B. 98, 121412(R) (2018).
  18. А.Б. Ваньков, Б.Д. Кайсин, И.В. Кукушкин, Письма в ЖЭТФ 110(4), 268 (2019).
  19. Б.Д. Кайсин, А.Б. Ваньков, И.В. Кукушкин, Письма в ЖЭТФ 112(1), 62?67 (2020).
  20. А.Б. Ваньков, И.В. Кукушкин, Письма в ЖЭТФ 113(2), 112 (2021).
  21. A.V. Shchepetilnikov, A.R. Khisameeva, and Y.A. Nefyodov, JETP Lett. 113, 657 (2021).
  22. J. Falson, I. Sodemann, B. Skinner, D. Tabrea, Y. Kozuka, A. Tsukazaki, M. Kawasaki, K. von Klitzing, and J.H. Smet, Nat. Mater. 21, 311 (2022).
  23. W.T. Wang, C. Wu, S. Tsay, M. Gau, I. Lo, H. Kao, D. Jang, and J.-C. Chiang, Appl. Phys. Lett. 91, 082110 (2007).
  24. J. Fu and M. Wu, J. Appl. Phys. 104, 093712 (2008).
  25. J. Fu, P.H. Penteado, D.R. Candido, G. J. Ferreira, D.P. Pires, E. Bernardes, and J.C. Egues, Phys. Rev. B 101, 134416 (2020).
  26. D. Maryenko, M. Kawamura, A. Ernst, V.K. Dugaev, E.Ya. Sherman, M. Kriener, M. S. Bahramy, Y. Kozuka, and M. Kawasaki, Nat. Commun. 12(1), 3180 (2021).
  27. T. Schaepers, N. Thillosen, S. Cabanas, N. Kaluza, V.A. Guzenko, and H. Hardtdegen, Phys. Status Solidi (c) 3, 4247 (2006).
  28. S. Brosig, K. Ensslin, R. J. Warburton, C. Nguyen, B. Brar, M. Thomas, and H. Kroemer, Phys. Rev. B 60, R13989(R) (1999).
  29. Y. J. Chung, K.W. Baldwin, K.W. West, N. Haug, J. van de Wetering, M. Shayegan, and L.N. Pfeiffer, Nano Lett. 19, 1908 (2019).
  30. G.-H. Chen and M.E. Raikh, Phys. Rev. B 60, 4826 (1999).
  31. A.V. Shchepetilnikov, A.R. Khisameeva, A.A. Dremin, and I.V. Kukushkin, JETP Lett. 115, 548 (2022).
  32. Y. Kozuka, S. Teraoka, J. Falson, A. Oiwa, A. Tsukazaki, S. Tarucha, and M. Kawasaki, Phys. Rev. B 87, 205411 (2013).
  33. T. Andrearczyk, J. Jaroszy'nski, G. Grabecki, T. Dietl, T. Fukumura, and M. Kawasaki, Phys. Rev. B 72, 121309(R) (2005).
  34. J. Betancourt, J. J. Saavedra-Arias, J.D. Burton, Y. Ishikawa, E.Y. Tsymbal, and J. P. Velev, Phys. Rev. B 88, 085418 (2013).
  35. V.V. Solovyev, A.B. Van'kov, I.V. Kukushkin, J. Falson, D. Zhang, D. Maryenko, Y. Kozuka, A. Tsukazaki, J.H. Smet, and M. Kawasaki, Appl. Phys. Lett. 106, 082102 (2015).
  36. J. Falson and M. Kawasaki, Rep. Prog. Phys. 81, 056501 (2018).
  37. Y. Kozuka, A. Tsukazaki, and M. Kawasaki, Appl. Phys. Rev. 1, 011303 (2014).
  38. D. Stein, K. von Klitzing, and G. Weimann, Phys. Rev. Lett. 51, 130 (1983).
  39. A.V. Shchepetilnikov, D.D. Frolov, Y.A. Nefyodov, I.V. Kukushkin, L. Tiemann, C. Reichl, W. Dietsche, and W. Wegscheider, JETP Lett. 108, 481 (2018).
  40. A.V. Shchepetilnikov, D.D. Frolov, V.V. Solovyev, Y.A. Nefyodov, A. Großer, T. Mikolajick, S. Schmult, and I.V. Kukushkin, Appl. Phys. Lett. 113, 052102 (2018).

版权所有 © Российская академия наук, 2023

##common.cookie##