Scanning of Electronic States in a Quantum Point Contact Using Asymmetrically Biased Side Gates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The conductance of a trench-type quantum point contact (QPC) with side gates has been experimentally investigated over a wide range of gate voltages. The performed measurements, in which the asymmetric gate bias modifies the confinement potential while the sum of the gate voltages populates it with electrons, made it possible to scan the electron states in the QPC. Analysis of the experimental data revealed an unusual four-well shape of the confining potential in a single QPC. The rather complicated transconductance plot measured can be divided into its component parts—the contributions of the four separate conducting channels. Different electron states observed in the experiment have been associated with a certain number of filled one-dimensional (1D) subbands belonging to different channels. A whole network of degeneration events of 1D subbands in parallel channels has been found. Almost every such event was experimentally manifested by anticrossings observed both for small and large numbers of filled 1D subbands.

About the authors

D. A. Pokhabov

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences; Faculty of Physics, Novosibirsk State University

Email: pokhabov@isp.nsc.ru
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

A. G. Pogosov

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences; Faculty of Physics, Novosibirsk State University

Email: pokhabov@isp.nsc.ru
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

E. Yu. Zhdanov

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences; Faculty of Physics, Novosibirsk State University

Email: pokhabov@isp.nsc.ru
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

A. K. Bakarov

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences; Faculty of Physics, Novosibirsk State University

Author for correspondence.
Email: pokhabov@isp.nsc.ru
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

References

  1. B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988).
  2. D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, J. Phys. C: Solid State Phys. 21, L209 (1988).
  3. P. Debray, S. M. S. Rahman, J. Wan, R. S. Newrock, M. Cahay, A. T. Ngo, S. E. Ulloa, S. T. Herbert, M. Muhammad, and M. Johnson, Nat. Nanotechnol. 4, 759 (2009).
  4. D. A. Pokhabov, A. G. Pogosov, E. Yu. Zhdanov, A. A. Shevyrin, A. K. Bakarov, and A. A. Shklyaev, Appl. Phys. Lett. 112, 082102 (2018).
  5. T. Masuda, K. Sekine, K. Nagase, K. S. Wickramasinghe, T. D. Mishima, M. B. Santos, and Y. Hirayama, Appl. Phys. Lett. 112, 192103 (2018).
  6. D. A. Pokhabov, A. G. Pogosov, E. Yu. Zhdanov, A. K. Bakarov, and A. A. Shklyaev, Appl. Phys. Lett. 115, 152101 (2019).
  7. I. M. Castleton, A. G. Davies, A. R. Hamilton, J. E. F. Frost, M. Y. Simmons, D. A. Ritchie, and M. Pepper, Physica B 249-251, 157 (1998).
  8. K. J. Thomas, J. T. Nicholls, M. Y. Simmons, W. R. Tribe, A. G. Davies, and M. Pepper, Phys. Rev. B 59, 12252 (1999).
  9. P. J. Simpson, D. R. Mace, C. J. B. Ford, I. Zailer, M. Pepper, D. A. Ritchie, J. E. F. Frost, M. P. Grimshaw, and G. A. C. Jones, Appl. Phys. Lett. 63, 3191 (1993).
  10. W. K. Hew, K. J. Thomas, M. Pepper, I. Farrer, D. Anderson, G. A. C. Jones, and D. A. Ritchie, Phys. Rev. Lett. 102, 056804 (2009).
  11. L. W. Smith, W. K. Hew, K. J. Thomas, M. Pepper, I. Farrer, D. Anderson, G. A. C. Jones, and D. A. Ritchie, Phys. Rev. B 80, 041306 (2009).
  12. W. K. Hew, K. J. Thomas, M. Pepper, I. Farrer, D. Anderson, G. A. C. Jones, and D. A. Ritchie, Physica E 42, 1118 (2010).
  13. L. W. Smith, W. K. Hew, K. J. Thomas, M. Pepper, I. Farrer, D. Anderson, G. A. C. Jones, and D. A. Ritchie, Physica E 42, 1114 (2010).
  14. S. Kumar, K. J. Thomas, L. W. Smith, M. Pepper, G. L. Creeth, I. Farrer, D. Ritchie, G. Jones, and J. Gri ths, Phys. Rev. B 90, 201304(R) (2014).
  15. S. Kumar, M. Pepper, H. Montagu, D. Ritchie, I. Farrer, J. Gri ths, and G. Jones, Appl. Phys. Lett. 118, 124002 (2021).
  16. A. V. Chaplik, JETP Lett. 31, 252 (1980).
  17. J. S. Meyer and K. A. Matveev, J. Phys.: Condens. Matter 21, 023203 (2009).
  18. J. S. Meyer, K. A. Matveev, and A. I. Larkin, Phys. Rev. Lett. 98, 126404 (2007).
  19. A. C. Mehta, C. J. Umrigar, J. S. Meyer, and H. U. Baranger, Phys. Rev. Lett. 110, 246802 (2013).
  20. Д. И. Сарыпов, Д. А. Похабов, А. Г. Погосов, Е. Ю. Жданов, А. К. Бакаров, Письма в ЖЭТФ 116(6), 50 (2022).
  21. Д. А. Похабов, А. Г. Погосов, Е. Ю. Жданов, А. К. Бакаров, А. А. Шкляев, ФТП 54, 1344 (2020).
  22. E. T. Owen and C. H. W. Barnes, Phys. Rev. Appl. 6, 054007 (2016).
  23. I. I. Yakimenko and I. P. Yakimenko, J. Phys.: Condens. Matter 34, 105302 (2022).
  24. D. A. Pokhabov, A. G. Pogosov, E. Yu. Zhdanov, A. K. Bakarov, and A. A. Shklyaev, Appl. Phys. Lett. 118, 012104 (2021).
  25. K.-J. Friedland, R. Hey, H. Kostial, R. Klann, and K. Ploog, Phys. Rev. Lett. 77, 4616 (1996).
  26. A. G. Pogosov, M. V. Budantsev, E. Yu. Zhdanov, D. A. Pokhabov, A. K. Bakarov, and A. I. Toropov, Appl. Phys. Lett. 100, 181902 (2012).
  27. A. G. Pogosov, A. A. Shevyrin, D. A. Pokhabov, E. Yu. Zhdanov, and S. Kumar, J. Phys: Condens. Matter 34, 263001 (2022).
  28. Л. И. Глазман, Г. Б. Лесовик, Д. Е. Хмельницкий, Р. И. Шехтер, Письма в ЖЭТФ 48, 218 (1988).
  29. M. Bu¨ttiker, Phys. Rev. B 41, 7906(R) (1990).
  30. A. Gupta, J. J. Heremans, G. Kataria, M. Chandra, S. Fallahi, G. C. Gardner, and M. J. Manfra, Nat.Commun. 12, 5048 (2021).

Copyright (c) 2023 Российская академия наук

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies