Vanadium-Containing Planar Heterostructures Based on Topological Insulators

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Vanadium-containing heterostructures consisting of an ultrathin magnetic film on the surface of a nonmagnetic topological insulator have been studied theoretically. A method has been demonstrated to control the Dirac point shift in the k space, which is a length measure of an exotic flat band appearing upon the formation of domain walls on the surface of antiferromagnetic topological insulator. The Dirac point shift is inversely proportional to the group velocity of electrons at the Dirac point and is proportional to the degree of localization of the topological state in the magnetic film. The shift is controlled by selecting a substrate with a certain work function. Particular systems have been proposed for the experimental study of flat band features in antiferromagnetic topological insulators.

About the authors

E. K. Petrov

National Research Tomsk State University; St. Petersburg State University

Email: evg.konst.petrov@gmail.com
634050, Tomsk, Russia; 198504, St. Petersburg, Russia

I. V. Silkin

National Research Tomsk State University

Email: evg.konst.petrov@gmail.com
634050, Tomsk, Russia

V. M. Kuznetsov

National Research Tomsk State University

Email: evg.konst.petrov@gmail.com
634050, Tomsk, Russia

T. V. Men'shchikova

National Research Tomsk State University

Email: evg.konst.petrov@gmail.com
634050, Tomsk, Russia

E. V Chulkov

National Research Tomsk State University; St. Petersburg State University; Departamento de Polimeros y Materiales Avanzados: Fisica, Quimica y Tecnologia, Facultad de Ciencias Quimicas, Universidad del Pais Vasco UPV/EHU

Author for correspondence.
Email: evg.konst.petrov@gmail.com
634050, Tomsk, Russia; 198504, St. Petersburg, Russia; 20080, San Sebastian/Donostia, Basque Country, Spain

References

  1. R.Yu,W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai, and Z. Fang, Science 329, 61 (2010).
  2. C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.-L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S.-C. Zhang, K. He, Y. Wang, L. Lu, X.-C. Ma, and Q.-K. Xue, Science 340, 167 (2013).
  3. T. Hirahara, S.V. Eremeev, T. Shirasawa et al. (Collaboration), Nano Lett. 17, 3493 (2017).
  4. M.M. Otrokov, T.V. Menshchikova, M.G. Vergniory, I.P. Rusinov, A.Yu. Vyazovskaya, Y.M. Koroteev, G. Bihlmayer, A. Ernst, P.M. Echenique, A. Arnau, and E.V. Chulkov, 2D Materials 4, 025082 (2017).
  5. M.M. Otrokov, I.P. Rusinov, M. Blanco-Rey, M. Hoffmann, A.Y. Vyazovskaya, S.V. Eremeev, A. Ernst, P.M. Echenique, A. Arnau, and E.V. Chulkov, Phys. Rev. Lett. 122, 107202 (2019).
  6. Y. Deng, Y.Yu, M. Z. Shi, Z. Guo, Z. Xu, J. Wang, X. H. Chen, and Y. Zhang, Science 67, 895 (2020).
  7. H. Deng, Z. Chen, A. Wo lo's, M. Konczykowski, K. Sobczak, J. Sitnicka, I.V. Fedorchenko, J. Borysiuk, T. Heider, L. Pluci'nski, K. Park, A.B. Georgescu, J. Cano, and L. Krusin-Elbaum, Nature Physics 17, 36 (2021).
  8. V.N. Men'shov, I. Shvets, and E.V. Chulkov, JETP Lett. 110(12), 771 (2019).
  9. E.K. Petrov, I.V. Silkin, T.V. Menshchikova, and E.V. Chulkov, JETP Lett. 109, 121 (2019).
  10. J. Wang, B. Lian, X.-L. Qi, and S.-C. Zhang, Phys. Rev. B 92, 081107 (2015).
  11. D. Zhang, M. Shi, T. Zhu, D. Xing, H. Zhang, and J. Wang, Phys. Rev. Lett. 122, 206401 (2019).
  12. M.M. Otrokov, I. I. Klimovskikh, H. Bentmann et al. (Collaboration), Nature 576, 416 (2019).
  13. R. S.K. Mong, A.M. Essin, and J. E. Moore, Phys. Rev. B 81, 245209 (2010).
  14. C. Liu, Y. Wang, H. Li, Y. Wu, Y. Li, J. Li, K. He, Y. Xu, J. Zhang, and Y. Wang, Nat. Mater. 19, 522 (2020).
  15. J. Wang, B. Lian, and S.-C. Zhang, Phys. Rev. B 93, 045115 (2016).
  16. S.V. Eremeev, I.P. Rusinov, Y.M. Koroteev, A.Y. Vyazovskaya, M. Hoffmann, P.M. Echenique, A. Ernst, M.M. Otrokov, and E.V. Chulkov, J. Phys. Chem. Lett. 12, 4268 (2021).
  17. E.K. Petrov, V.N. Men'shov, I.P. Rusinov, M. Hoffmann, A. Ernst, M.M. Otrokov, V.K. Dugaev, T.V. Menshchikova, and E.V. Chulkov, Phys. Rev. B 103, 235142 (2021).
  18. J. Ge, Y. Liu, J. Li, H. Li, T. Luo, Y. Wu, Y. Xu, and J. Wang, National Science Review 7, 1280 (2020).
  19. Y. Gong, J. Guo, J. Li et al. (Collaboration), Chin. Phys. Lett. 36, 076801 (2019).
  20. A.M. Shikin, D.A. Estyunin, I. I. Klimovskikh et al. (Collaboration), Sci. Rep. 10, 13226 (2020).
  21. B. Li, J.-Q. Yan, D.M. Pajerowski, E. Gordon, A.-M. Nedi'c, Y. Sizyuk, L. Ke, P.P. Orth, D. Vaknin, and R. J. McQueeney, Phys. Rev. Lett. 124, 167204 (2020).
  22. D.A. Estyunin, I. I. Klimovskikh, A.M. Shikin, E. F. Schwier, M.M. Otrokov, A. Kimura, S. Kumar, S.O. Filnov, Z. S. Aliev, M. B. Babanly, and E.V. Chulkov, APL Mater. 8, 021105 (2020).
  23. R.C. Vidal, H. Bentmann, T.R. F. Peixoto et al. (Collaboration), Phys. Rev. B 100, 121104 (2019).
  24. J.-Q. Yan, Q. Zhang, T. Heitmann, Z. Huang, K.Y. Chen, J.-G. Cheng,W.Wu, D. Vaknin, B.C. Sales, and R. J. McQueeney, Physical Review Materials 3, 064202 (2019).
  25. S.H. Lee, Y. Zhu, Y.Wang, L. Miao, T. Pillsbury, H. Yi, S. Kempinger, J. Hu, C.A. Heikes, P. Quarterman, W. Ratcliff, J. A. Borchers, H. Zhang, X. Ke, D. Graf, N. Alem, C.-Z. Chang, N. Samarth, and Z. Mao, Physical Review Research 1, 012011 (2019).
  26. P.M. Sass, W. Ge, J. Yan, D. Obeysekera, J. J. Yang, and W. Wu, Nano Lett. 20, 2609 (2020).
  27. K. F. Garrity, S. Chowdhury, and F.M. Tavazza, Physical Review Materials 5, 024207 (2021).
  28. P. Swatek, Y. Wu, L.-L. Wang, K. Lee, B. Schrunk, J. Yan, and A. Kaminski, Phys. Rev. B 101, 161109 (2020).
  29. P.M. Sass, J. Kim, D. Vanderbilt, J. Yan, and W. Wu, Phys. Rev. Lett. 125, 037201 (2020).
  30. A. Zeugner, F. Nietschke, A.U.B. Wolter et al. (Collaboration), Chem. Mater. 31, 2795 (2019).
  31. H. Li, S.-Y. Gao, S.-F. Duan et al. (Collaboration), Phys. Rev. X 9, (2019).
  32. Y.-J. Hao, P. Liu, Y. Feng et al. (Collaboration), Phys. Rev. X 9, 041038 (2019).
  33. Y. J. Chen, L.X. Xu, J.H. Li et al. (Collaboration), Phys. Rev. X 9, 041040 (2019).
  34. B. Lian, Z. Liu, Y. Zhang, and J. Wang, Phys. Rev. Lett. 124, 126402 (2020).
  35. T. Hirahara, M.M. Otrokov, T.T. Sasaki et al. (Collaboration), Nat. Commun. 11, 4821 (2020).
  36. E.D. L. Rienks, S. Wimmer, J. S'anchez-Barriga et al. (Collaboration), Nature 576, 423 (2019).
  37. Z. S. Aliev, I.R. Amiraslanov, D. I. Nasonova, A.V. Shevelkov, N.A. Abdullayev, Z.A. Jahangirli, E.N. Orujlu, M.M. Otrokov, N.T. Mamedov, M.B. Babanly, and E.V. Chulkov, J. Alloys Compd. 789, 443 (2019).
  38. C. Hu, K.N. Gordon, P. Liu et al. (Collaboration), Nat. Commun. 11, 97 (2020).
  39. Y. Gao, K. Liu, and Z.-Y. Lu, Physical Review Research 4, 023030 (2022).
  40. C. Hu, L. Ding, K.N. Gordon et al. (Collaboration), Sci. Adv. 6, eaba4275 (2020).
  41. K. Yasuda, M. Mogi, R. Yoshimi, A. Tsukazaki, K. S. Takahashi, M. Kawasaki, F. Kagawa, and Y. Tokura, Science 358, 1311 (2017).
  42. I.T. Rosen, E. J. Fox, X. Kou, L. Pan, K. L. Wang, and D. Goldhaber-Gordon, Quantum Mater. 2, 69 (2017).
  43. I.P. Rusinov, V.N. Men'shov, and E.V. Chulkov, Phys. Rev. B 104, 035411 (2021).
  44. V.N. Men'shov, I.P. Rusinov, and E.V. Chulkov, JETP Lett. 114, 699 (2021).
  45. K. Kim, A. DaSilva, S. Huang, B. Fallahazad, S. Larentis, T. Taniguchi, K. Watanabe, B. J. LeRoy, A.H. MacDonald, and E. Tutuc, Proceedings of the National Academy of Sciences 114(13), 3364 (2017).
  46. A.L. Sharpe, E. J. Fox, A.W. Barnard, J. Finney, K. Watanabe, T. Taniguchi, M. Kastner, and D. Goldhaber-Gordon, Science 365(6453), 605 (2019).
  47. H. Yoo, R. Engelke, S. Carr et al. (Collaboration), Nat. Mater. 18(5), 448 (2019).
  48. T.Wolf, J. L. Lado, G. Blatter, and O. Zilberberg, Phys. Rev. Lett. 123(9), 096802 (2019).
  49. X. Lu, P. Stepanov, W. Yang, M. Xie, M.A. Aamir, I. Das, C. Urgell, K.Watanabe, T. Taniguchi, G. Zhang, A. Bachtold, A.H. MacDonald, and D.K. Efetov, Nature 574, 653 (2019).
  50. Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J.Y. Luo, J.D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R.C. Ashoori, and P. Jarillo-Herrero, Nature 556, 80 (2018).
  51. M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T. Taniguchi, D. Graf, A. F. Young, and C.R. Dean, Science 363, 1059 (2019).
  52. Y. Cao, V. Fatemi, S. Fang, K.Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature 556, 43 (2018).
  53. L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
  54. V. S. Stolyarov, S. Pons, S. Vlaic, S.V. Remizov, D. S. Shapiro, C. Brun, S. I. Bozhko, T. Cren, T.V. Menshchikova, E.V. Chulkov, W.V. Pogosov, Y.E. Lozovik, and D. Roditchev, J. Phys. Chem. Lett. 12, 9068 (2021).
  55. A. Kudriashov, I. Babich, R.A. Hovhannisyan, A.G. Shishkin, S.N. Kozlov, A. Fedorov, D.V. Vyalikh, E. Khestanova, M.Y. Kupriyanov, and V. S. Stolyarov, Adv. Funct. Mater. 32, 2209853 (2022).
  56. M.M. Otrokov, T.V. Menshchikova, I.P. Rusinov, M.G. Vergniory, V.M. Kuznetsov, and E.V. Chulkov, JETP Lett. 105, 297 (2017).
  57. J. Henk, M. Flieger, I.V. Maznichenko, I. Mertig, A. Ernst, S.V. Eremeev, and E.V. Chulkov, Phys. Rev. Lett. 109, 076801 (2012).
  58. L.-X. Wang, Y. Yan, L. Zhang, Z.-M. Liao, H.-C. Wu, and D.-P. Yu, Nanoscale 7(40), 16687 (2015).
  59. T.V. Menshchikova, M.M. Otrokov, S. S. Tsirkin, D.A. Samorokov, V.V. Bebneva, A. Ernst, V.M. Kuznetsov, and E.V. Chulkov, Nano Lett. 13, 6064 (2013).
  60. S. Lisi, X. Lu, T. Benschop et al. (Collaboration), Nature Phys. 17(2), 189 (2021).
  61. M. I.B. Utama, R. J. Koch, K. Lee et al. (Collaboration), Nature Phys. 17(2), 184 (2021).
  62. D. Pierucci, H. Sediri, M. Hajlaoui, J.-C. Girard, T. Brumme, M. Calandra, E. Velez-Fort, G. Patriarche, M.G. Silly, G. Ferro, V. Souli'ere, M. Marangolo, F. Sirotti, F. Mauri, and A. Ouerghi, ACS Nano 9(5), 5432 (2015).
  63. D. Marchenko, D. Evtushinsky, E. Golias, A. Varykhalov, T. Seyller, and O. Rader, Sci. Adv. 4(11), eaau0059 (2018).
  64. H. Henck, J. Avila, Z. Ben Aziza et al. (Collaboration), Phys. Rev. B 97, 245421 (2018).
  65. P.E. Bl�ochl, Phys. Rev. B 50(24), 17953 (1994).
  66. G. Kresse and J. Hafner, Phys. Rev. B 47(1), 558 (1993).
  67. G. Kresse and J. Furthm�uller, Phys. Rev. B 54(16), 11169 (1996).
  68. G. Kresse and J. Furthm�uller, Comput. Mater. Sci. 6(1), 15 (1996).
  69. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77(18), 4 (1996).
  70. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132(15), 154104 (2010).
  71. V. I. Anisimov, J. Zaanen, and O.K. Andersen, Phys. Rev. B 44(3), 943 (1991).
  72. S. Dudarev, G. Botton, S. Savrasov, C. Humphreys, and A. Sutton, Phys. Rev. B 57(3), 1505 (1998).
  73. M. Cococcioni and S. De Gironcoli, Phys. Rev. B 71(3), 035105 (2005).

Copyright (c) 2023 Российская академия наук

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies