Girotropnye kolebaniya magnitnykh vikhrey v dvukh vzaimodeystvuyushchikh ferromagnitnykh diskakh

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

В работе представлены результаты экспериментальных исследований и численного моделирования гиротропного движения вихревых распределений намагниченности в двух взаимодействующих ферромагнитных дисках. Методом магнитно-резонансной силовой спектроскопии изучена зависимость резонансной частоты коллективной гиротропной моды колебаний вихрей от расстояния между центрами дисков. Из данной зависимости на основе решений уравнения Тиля, получена оценка энергии взаимодействия магнитных вихрей в зависимости от расстояния между дисками.

Bibliografia

  1. S. M. Rezende, C. Chesman, M. A. Lucena, A. Azevedo, F. M. de Aguiar, and S. S. P. Parkin, J. Appl. Phys. 84, 958 (1998).
  2. A. B. Drovosekov, D. I. Kholin, N. M. Kreines, O. V. Zhotikova, and S. O. Demokritov, J. Magn. Magn. Mater. 226, 1779 (2001).
  3. E. S. Demidov, N. S. Gusev, L. I. Budarin, E. A. Karashtin, V. L. Mironov, and A. A. Fraerman, J. Appl. Phys. 120, 173901 (2016).
  4. Z. Zhang, L. Zhou, P. E. Wigen, and K. Ounadjela, Phys. Rev. B 50, 6094(1994).
  5. L. C. Nagamine, J. Geshev, T. Menegotto, A. A. R. Fernandes, A. Biondo, and E. B. Saitovitch, J. Magn. Magn. Mater. 288, 205 (2005).
  6. M. Belmeguenai, T. Martin, G. Woltersdorf, M. Maier, and G. Bayreuther, Phys. Rev. B 76, 104414 (2007).
  7. A. B. Drovosekov, D. I. Kholin, and N. M. Kreines, Low Temp. Phys. 36, 808 (2010).
  8. S. O. Demokritov, E. Tsymbal, P. Grunberg, W. Zinn, and I. K. Schuller, Phys. Rev. B 49, 720 (1994).
  9. A. F. Kravets, A. N. Timoshevskii, B. Z. Yanchitsky, M. A. Bergmann, J. Buhler, S. Andersson, and V. Korenivski, Phys. Rev. B 86, 214413 (2012).
  10. D. Schwenk, F. Fishman, and F. Schwabl, Phys. Rev. B 38, 11618 (1988).
  11. R. Dutra, D. E. Gonzalez-Chavez, T. L. Marcondes, R. L. Sommer, S. O. Parreiras, and M. D. Martins, Phys. Rev. B 99, 014413 (2019).
  12. D. E. Gonzalez-Chavez, R. Dutra, W. O. Rosa, T. L. Marcondes, A. Mello, and R. L. Sommer, Phys. Rev. B 88, 104431 (2013).
  13. F. G. Aliev, A. A. Awad, D. Dieleman, A. Lara, V. Metlushko, and K. Y. Guslienko, Phys. Rev. B 84, 144406 (2011).
  14. R. V. Verba, A. Hierro-Rodriguez, D. Navas, J. Ding, X. M. Liu, A. O. Adeyeye, K. Y. Guslienko, and G. N. Kakazei, Phys. Rev. B 93, 214437 (2016).
  15. J. A. Sidles, Appl. Phys. Lett. 58, 2854 (1991).
  16. O. Klein, G. de Loubens, V. V. Naletov, F. Boust, T. Guillet, H. Hurdequint, A. Leksikov, A. N. Slavin, V. S. Tiberkevich, and N. Vukadinovic, Phys. Rev. B 78, 144410 (2008).
  17. H.-J. Chia, F. Guo, L. M. Belova, and D. McMichael, Phys. Rev. B 86, 184406 (2012).
  18. F. Guo, L. M. Belova, and D. McMichael, Phys. Rev. Lett. 110, 017601 (2013).
  19. D.Rugar, O. Zuger, S. Hoen, C. S. Yannoni, H. M. Vieth, and R. D. Kendrick, Science 264, 1560 (1994).
  20. B. Pigeau, G. de Loubens, O. Klein, A. Riegler, F. Lochner, G. Schmidt, and L. W. Molenkamp, Nat. Phys. 7, 2631 (2011).
  21. B. Pigeau, G. de Loubens, O. Klein, A. Riegler, F. Lochner, G. Schmidt, L. W. Molenkamp, V. S. Tiberkevich and A. N. Slavin, Appl. Phys. Lett. 96, 132506 (2010).
  22. N. A. Usov and S. E. Peschany, Phys. Met. Metall. 12, 13 (1994).
  23. K. Y. Guslienko, V. Novosad, Y. Otani, H. Shima, and K. Fukamichi, Phys. Rev. B 65, 024414 (2001).
  24. K. L. Metlov and K. Y. Guslienko, J. Magn. Magn. Mater. 242, 1015 (2002).
  25. R. Lehndor, D. E. Beurgler, S. Gliga, R. Hertel, P. Gru¨nberg, C. M. Schneider, and Z. Celinski, Phys. Rev. B 80, 054412 (2009).
  26. V. S. Pribiag, I. N. Krivorotov, G. D. Fuchs, P. M. Braganca, O. Ozatay, J. C. Sankey, D. C. Ralph, and R. A. Buhrman, Nat. Phys. 3, 498 (2007).
  27. Q. Mistral, M. van Kampen, G. Hrkac, J.-V. Kim, T. Devolder, P. Crozat, C. Chappert, L. Lagae, and T. Schre, Phys. Rev. Lett. 100, 257201 (2008).
  28. A. Dussaux, B. Georges, J. Grollier, V. Cros, A. V. Khvalkovskiy, A. Fukushima, M. Konoto, H. Kubota, K. Yakushiji, S. Yuasa, K. A. Zvezdin, K. Ando, and A. Fert, Nat.Commun. 1, 8 (2010).
  29. S. Petit-Watelot, J.-V. Kim, A.Ruotolo, R. M. Otxoa, K. Bouzehouane, J. Grollier, A. Vansteenkiste, B. van de Wiele, V. Cros, and T. Devolder, Nat. Phys. 8, 682 (2012).
  30. A. Slavin and V. Tiberkevich, IEEE Trans. on Magnetics 45, 1875 (2009).
  31. Z. Li, Y. C. Li, and S. Zhang, Phys. Rev. B 4, 054417 (2006).
  32. M. R. Pufall, W. H. Rippard, S. E.Russek, S. Kaka, and J. A. Katine, Phys. Rev. Lett. 97, 087206 (2006).
  33. A. N. Slavin and V. S. Tiberkevich, Phys. Rev. B 74, 104401 (2006).
  34. D. V. Berkov and N. L. Gorn, Phys. Rev. B 76, 144414 (2007).
  35. В. Л. Миронов, Основы сканирующей зондовой микроскопии, Техносфера, М. (2004).
  36. T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Duo, Science 289, 930 (2000).
  37. Е. В. Скороходов, М. В. Сапожников, А. Н. Резник, В. В. Поляков, В. А. Быков, А. П. Володин, В. Л. Миронов, Приборы и техника эксперимента 5, 140 (2018).
  38. A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. van Waeyenberge, AIP Adv. 4, 107133 (2014).
  39. D. A. Tatarskiy, V. L. Mironov, E. V. Skorokhodov, and A. A. Fraerman, J. Magn. Magn. Mat. 522, 169152 (2022).
  40. A. A. Thiele, J. Appl. Phys. 45, 377 (1974).
  41. K. Yu. Guslienko, K. S. Buchanan, S. D. Bader, and V. Novosad, Appl. Phys. Lett. 86, 223112 (2005).
  42. K. A. Звездин, Е. Г. Екомасов, Физика металлов и металловедение 123(3), 219 (2022).
  43. V. L. Mironov, D. A. Tatarskiy, A. D. E mov, and A. A. Fraerman, IEEE Trans. Magn. 57, 4300906 (2021).

Declaração de direitos autorais © Российская академия наук, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies