Kvantovyy algoritm invariantnoy otsenki blizosti klassicheskikh shifrov k odnorazovomu bloknotu

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Предложена инвариантная мера близости блочного шифра к совершенному (идеальному) шифру - одноразовому блокноту. Мера близости является инвариантной, не зависит от конкретной реализации одноразового блокнота - является одинаковой для любой реализации. Предложен квантовый алгоритм оценки близости блочного шифра к идеальному, в смысле предложенной меры. Квантовый алгоритм, основанный на определении собственного значения (фазы) квантового состояния, с высокой вероятностью и точностью позволяет оценить меру близости шифра к идеальному.

作者简介

S. Molotkov

Email: sergei.molotkov@gmail.com

参考

  1. D. Deutsch and R.Jozsa, Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences 439(1907), 553 (1992).
  2. P. W. Shor, SIAM J.Comput. 26(5), 1484 (1997).
  3. L. K.Grover, A fast quantum mechanical algorithm for database search, Proceedings of the twenty-eighth annual ACM symposium on Theory of computing - STOC '96. ACM Press, N. Y., USA (1996), p. 212.
  4. D. R. Simon, SIAM J.Comput. 26(5), 1474 (1997).
  5. M. Kaplan, G. Leurent, A. Leverrier, and M. Naya-Plasencia, arXiv:1602.05973 [quan-ph], (2016).
  6. A. Ambainis, Quantum Walk Algorithm for Element Distinctness, 45th Annual IEEE Symposium on Foundations of Computer Science. IEEE (2014), p. 22; https://ieeexplore.ieee.org/document/1366221.
  7. A. W. Harrow, A. Hassidim, and S. Lloyd, Phys. Rev. Lett. 103(15), 150502 (2009).
  8. D. Dervovic, M. Herbster, P. Mountney, S. Severini, N. Usher1, and L. Wossnig, arXiv:0311001 [quant-ph], (2014).
  9. M. Grassl, B. Langenberg, M. Roetteler, and R. Steinwand, arXiv:1512.04965 [quant-ph] (2015).
  10. M. Almazrooie, A. Samsudin, R. Abdullah, and K. N. Mutter, SpringerPlus 5(1), 1494 (2016).
  11. M. Almazrooie, A. Samsudin, R. Abdullah, and K. N. Mutter, Quantum Grover Attack on the Simpli ed-AES, Proceedings of the 2018 7th International Conference on Software and Computer Applications, ACM, N.Y., NY, USA (2018), p. 204.
  12. Д. В. Денисенко, Г. Б. Маршалко, М. В. Никитенкова, В. И. Рудской, В. А. Шишкин, ЖЭТФ 155, 645 (2019).
  13. V. Gheorghiu and M.Mosca, A resource estimation framework for quantum attacks against cryptographic functions - recent developments, (2021); https://globalriskinstitute.org.
  14. M. Piani and M. Mosca, Quantum threat timeline report, (2020); https://globalriskinstitute.org.
  15. M.Piani, M.Mosca, Quantum threat timeline report (2019); https://globalriskinstitute.org.
  16. V. Gheorghiu and M.Mosca, A resource estimation framework for quantum attacks against cryptographic functions, Global Risk Institute quantum risk assessment report (2020); https://globalriskinstitute.org.
  17. V. Gheorghiu and M. Mosca, A resource estimation framework for quantum attacks against cryptographic functions, part 4, Global Risk Institute quantum risk assessment report (2018); https://globalriskinstitute.org.
  18. V. Gheorghiu and M. Mosca, A resource estimation framework for quantum attacks against cryptographic functions, part 3, Global Risk Institute quantum risk assessment report (2018); https://globalriskinstitute.org.
  19. V. Gheorghiu and M.Mosca, A resource estimation framework for quantum attacks against cryptographic functions, part 2, Global Risk Institute quantum risk assessment report (2018); https://globalriskinstitute.org.
  20. V. Gheorghiu and M.Mosca, A resource estimation framework for quantum attacks against cryptographic functions, part 1, Global Risk Institute quantum risk assessment report (2017); https://globalriskinstitute.org.
  21. Y.-A. Chen and X.-S. Gao, arXiv:1712.06239 [quant-ph] (2018).
  22. A. Ambainis, arXiv:1010.4458 [quant-ph] (2010).
  23. A. M. Childs, R. Kothari, and R. D. Somma, SIAM Journal on Computing. 46(6), 1920 (2017).
  24. L. Wossnig, Z. Zhao, and A. Prakash, Phys. Rev. Lett. 120(5), 050502 (2018).
  25. G. Brassard, P. Hoyer, and A. Tapp, ACM SIGACT News 28(2), 14 (1997).
  26. A. Chailloux, M. Naya-Plasencia, and A. Schrottenloher, An E cient Quantum Collision Search Algorithm and Implications on Symmetric Cryptography, preprint (2017); https://eprint.iacr.org/2017/847.
  27. G. Brassard, P. Hoyer, and A. Tapp, arXiv:0005055 [quant-ph] (2000).
  28. T. H¨aner and M. Soeken, arXiv:2006.03845 [quant-ph] (2020).
  29. M. Roetteler and R. Steinwandt, Inf. Process. Lett. 115(1), 40 (2015).
  30. A. Hosoyamada and E. Aoki, On Quantum Related-Key Attacks on Iterated Even-Mansour Ciphers, ed. by S. Obana and K. Chida, Springer International Publishing AG, WSEC 2017, LNCS 10418, Springer Nature Switzerland AG, Geneva (2017)p. 3; https://link.springer.com/chapter/10.1007/978-3-319-64200-0_1.
  31. X.Bonnetain, M. Naya-Plasencia, and A. Schrottenloher, On Quantum Slide Attacks, preprint (2018); https://eprint.iacr.org/2018/1067.pdf.
  32. А. Китаев, А. Шень, М. Вялый, Классические и квантовые вычисления, МЦНМО-ЧеРо, М. (1999), 192 с.
  33. G. Leander and A.May, Grover Meets Simon - Quantumly Attacking the FX-construction, Advances in Cryptology ? ASIACRYPT 2017 23rd International Conference on the Theory and Applications of Cryptology and Information Security Hong Kong, China, December 3-7, 2017 Proceedings, Part II, Springer (2017).
  34. G. S. Vernam, Journal of the IEEE 55, 109 (1926).
  35. В. А. Котельников, Отчет (19 Июня, 1941); https://cryptography-museum.ru.
  36. C. E. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal, July, 379 (1948)
  37. Oct., 623 (1948)
  38. The material in this paper appeared originally in a con dential report A Mathematical Theory of Cryptography, dated Sept. 1, (1945); https://www.iacr.org>shannon>shannon45.
  39. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, 10th Anniversary Edition, Cambridge University Press, Cambridge, N.Y., Melbourne, Madrid, Cape Town, Singapore, Sao Paulo, Delhi, Dubai, Tokyo, Mexico City (2010).
  40. S. N. Molotkov, Laser Phys. Lett. 19, 045201 (2022).
  41. S. N. Molotkov, Laser Phys. Lett. 19, 075203 (2022).
  42. И. М. Арбеков, С. Н. Молотков, ЖЭТФ 152, 62 (2017).
  43. С. Н. Молотков, Письма в ЖЭТФ 103, 389 (2016).

版权所有 © Российская академия наук, 2023

##common.cookie##