Биллиардные книжки реализуют все базы слоений Лиувилля интегрируемых гамильтоновых систем

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе рассматривается обобщение математического биллиарда, ограниченного дугами софокусных квадрик, называемое биллиардными книжками. Биллиардные книжки задают большой класс интегрируемых гамильтоновых систем. В связи с этим возникает вопрос о возможности реализации интегрируемых гамильтоновых систем с двумя степенями свободы биллиардными книжками. Ранее авторами было доказано, что для любой невырожденной трехмерной бифуркации ($3$-атома) алгоритмически строится биллиардная книжка, в которой возникает такая бифуркация. Опираясь на предыдущий результат, в статье авторы приводят доказательство того, что по любой базе слоения Лиувилля (грубой молекуле) алгоритмически строится биллиардная книжка такая, что база слоения Лиувилля этой системы изоморфна заданной изначально.Библиография: 15 названий.

Об авторах

Виктория Викторовна Ведюшкина

Московский государственный университет имени М. В. Ломоносова, механико-математический факультет

Email: arinir@yandex.ru
доктор физико-математических наук

Ирина Сергеевна Харчева

Московский государственный университет имени М. В. Ломоносова, механико-математический факультет

Email: irina_harcheva@mail.ru
без ученой степени, без звания

Список литературы

  1. В. В. Козлов, Д. В. Трещeв, Биллиарды. Генетическое введение в динамику систем с ударами, Изд-во МГУ, М., 1991, 168 с.
  2. В. В. Фокичева, “Описание особенностей системы бильярда в областях, ограниченных софокусными эллипсами или гиперболами”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2014, № 4, 18–27
  3. И. С. Харчева, “Изоэнергетические многообразия интегрируемых бильярдных книжек”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2020, № 4, 12–22
  4. В. В. Ведюшкина (Фокичева), А. Т. Фоменко, “Интегрируемые топологические биллиарды и эквивалентные динамические системы”, Изв. РАН. Сер. матем., 81:4 (2017), 20–67
  5. В. В. Ведюшкина (Фокичева), А. Т. Фоменко, “Интегрируемые геодезические потоки на ориентируемых двумерных поверхностях и топологические биллиарды”, Изв. РАН. Сер. матем., 83:6 (2019), 63–103
  6. А. Т. Фоменко, “Симплектическая топология вполне интегрируемых гамильтоновых систем”, УМН, 44:1(265) (1989), 145–173
  7. А. Т. Фоменко, “Теория Морса интегрируемых гамильтоновых систем”, Докл. АН СССР, 287:5 (1986), 1071–1075
  8. А. В. Болсинов, А. Т. Фоменко, Интегрируемые гамильтоновы системы. Геометрия, топология, классификация, т. 1, Изд. дом “Удмуртский университет”, Ижевск, 1999, 444 с.
  9. А. Т. Фоменко, Х. Цишанг, “Топологический инвариант и критерий эквивалентности интегрируемых гамильтоновых систем с двумя степенями свободы”, Изв. АН СССР. Сер. матем., 54:3 (1990), 546–575
  10. В. И. Драгович, М. Раднович, “Псевдоинтегрируемые биллиарды и решетки двойных отражений”, УМН, 70:1(421) (2015), 3–34
  11. В. А. Москвин, “Топология слоений Лиувилля интегрируемого бильярда в невыпуклых областях”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2018, № 3, 21–29
  12. В. В. Фокичева, “Топологическая классификация биллиардов в локально плоских областях, ограниченных дугами софокусных квадрик”, Матем. сб., 206:10 (2015), 127–176
  13. A. T. Fomenko, V. V. Vedyushkina, “Topological billiards, conservation laws and classification of trajectories”, Functional analysis and geometry: Selim Grigorievich Krein centennial, Contemp. Math., 733, Amer. Math. Soc., Providence, RI, 2019, 129–148
  14. В. В. Ведюшкина, И. С. Харчева, “Биллиардные книжки моделируют все трехмерные бифуркации интегрируемых гамильтоновых систем”, Матем. сб., 209:12 (2018), 17–56
  15. В. В. Ведюшкина, А. Т. Фоменко, И. С. Харчева, “Моделирование невырожденных бифуркаций замыканий решений интегрируемых систем с двумя степенями свободы интегрируемыми топологическими биллиардами”, Докл. РАН, 479:6 (2018), 607–610

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Ведюшкина В.В., Харчева И.С., 2021

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).