Complete bipartite graphs flexible in the plane

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A complete bipartite graph $K_{3,3}$, considered as a planar linkage with joints at the vertices and with rods as edges, is in general inflexible, that is, it admits only motions as a whole. Two types of its paradoxical mobility were found by Dixon in 1899. Later on, in a series of papers by several different authors the question of the flexibility of $K_{m,n}$ was solved for almost all pairs $(m,n)$. We solve it for all complete bipartite graphs in the Euclidean plane, as well as on the sphere and hyperbolic plane. We give independent self-contained proofs without extensive computations, which are almost the same in the Euclidean, hyperbolic and spherical cases.

Sobre autores

Mikhail Kovalev

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Autor responsável pela correspondência
Email: mdkovalev@mtu-net.ru
Doctor of physico-mathematical sciences, Professor

Stepan Orevkov

Steklov Mathematical Institute of Russian Academy of Sciences; Institut de Mathématiques de Toulouse

Email: orevkov@math.ups-tlse.fr
Candidate of physico-mathematical sciences, Senior Researcher

Bibliografia

  1. O. Bottema, “Die Bahnkurven eines merkwürdigen Zwölfstabgetriebes”, Österr. Ing.-Arch., 14 (1960), 218–222
  2. A. C. Dixon, “On certain deformable frameworks”, Messenger Math., 29 (1899/1900), 1–21
  3. M. Gallet, G. Grasegger, J. Legersky, J. Schicho, “On the existence of paradoxical motions of generically rigid graphs on the sphere”, SIAM J. Discrete Math., 35:1 (2021), 325–361
  4. I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Math. Theory Appl., Birkhäuser Boston, Inc., 1994, x+523 pp.
  5. G. Grasegger, J. Legersky, J. Schicho, “On the classification of motions of paradoxically movable graphs”, J. Comput. Geom., 11:1 (2020), 548–575
  6. М. Д. Ковалeв, “Шарнирный четырехзвенник: приводимость конфигурационного пространства и передаточная функция”, ПММ, 86:1 (2022), 77–87
  7. Н. И. Левитский, Теория механизмов и машин, 2-е изд., перераб. и доп., Наука, М., 1990, 592 с.
  8. H. Maehara, N. Tokushige, “When does a planar bipartite framework admit a continuous deformation?”, Theoret. Comput. Sci., 263:1-2 (2001), 345–354
  9. D. Walter, M. L. Husty, “On a nine-bar linkage, its possible configurations and conditions for paradoxical mobility”, Proceedings of twelfth world congress on mechanism and machine science, IFToMM 2007 (Besançon, 2007), 2007, 1–6
  10. W. Whiteley, “Infinitesimal motions of a bipartite framework”, Pacific J. Math., 110:1 (1984), 233–255
  11. W. Wunderlich, “On deformable nine-bar linkages with six triple joints”, Indag. Math. (N.S.), 79:3 (1976), 257–262

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Ковалёв М.D., Оревков С.Y., 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).