Algebras of free holomorphic functions and localizations

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider the algebras of holomorphic functions on a free polydisc $\mathscr F^T(\mathbb D_R^n)$, $\mathscr F(\mathbb D_R^n)$ and the algebra of holomorphic functions on a free ball $\mathscr F(\mathbb B_r^n)$. We show that the algebra $\mathscr F(\mathbb D_R^n)$ is a localization of a free algebra and, moreover, is a free analytic algebra with $n$ generators (in the sense of J. Taylor), while the algebra $\mathscr F(\mathbb B_r^n)$ is not a localization of a free algebra. In addition we prove that the class of localizations of free algebras and the class of free analytic algebras are closed under the operation of the Arens-Michael free product. Bibliography: 21 titles.

Авторлар туралы

Ksenia Syrtseva

Department of Mathematics, National Research University "Higher School of Economics"

without scientific degree, no status

Әдебиет тізімі

  1. J. L. Taylor, “A general framework for a multi-operator functional calculus”, Advances in Math., 9:2 (1972), 183–252
  2. J. L. Taylor, “Functions of several noncommuting variables”, Bull. Amer. Math. Soc., 79 (1973), 1–34
  3. W. Dicks, “Mayer–Vietoris presentations over colimits of rings”, Proc. London Math. Soc. (3), 34:3 (1977), 557–576
  4. W. Geigle, H. Lenzing, “Perpendicular categories with applications to representations and sheaves”, J. Algebra, 144:2 (1991), 273–343
  5. A. Neeman, A. Ranicki, Noncommutative localization and chain complexes. I. Algebraic K- and L-theory
  6. R. Meyer, Embeddings of derived categories of bornological modules, 2004
  7. D. S. Kaliuzhnyi-Verbovetskyi, V. Vinnikov, Foundations of free noncommutative function theory, Math. Surveys Monogr., 199, Amer. Math. Soc., Providence, RI, 2014, vi+183 pp.
  8. A. Yu. Pirkovskii, “Holomorphically finitely generated algebras”, J. Noncommut. Geom., 9:1 (2015), 215–264
  9. A. Yu. Pirkovskii, Quantized algebras of holomorphic functions on the polydisk and on the ball, 2015
  10. G. Popescu, “Free holomorphic functions on the unit ball of $B(mathscr{H})^n$”, J. Funct. Anal., 241:1 (2006), 268–333
  11. J. L. Taylor, “Homology and cohomology for topological algebras”, Advances in Math., 9:2 (1972), 137–182
  12. A. Ya. Helemskii, “Homology for the algebras of analysis”, Handbook of algebra, v. 2, Elsevier/North-Holland, Amsterdam, 2000, 151–274
  13. Х. Шефер, Топологические векторные пространства, Мир, М., 1971, 359 с.
  14. А. Ю. Пирковский, “Оболочки Аренса–Майкла, гомологические эпиморфизмы и относительно квазисвободные алгебры”, Тр. ММО, 69, УРСС, М., 2008, 34–125
  15. P. Bonneau, M. Flato, M. Gerstenhaber, G. Pinczon, “The hidden group structure of quantum groups: strong duality, rigidity and preferred deformations”, Comm. Math. Phys., 161:1 (1994), 125–156
  16. А. Робертсон, В. Робертсон, Топологические векторные пространства, Мир, М., 1967, 257 с.
  17. J. Cuntz, “Cyclic theory and the bivariant Chern–Connes character”, Noncommutative geometry, Lecture Notes in Math., 1831, Fond. CIME/CIME Found. Subser., Springer, Berlin, 2004, 73–135
  18. A. Nica, R. Speicher, Lectures on the combinatorics of free probability, London Math. Soc. Lecture Note Ser., 335, Cambridge Univ. Press, Cambridge, 2006, xvi+417 pp.
  19. А. Я. Хелемский, Банаховы и полинормированные алгебры: общая теория, представления, гомологии, Наука, М., 1989, 465 с.
  20. A. Yu. Pirkovskii, “Biprojective topological algebras of homological bidimension $1$”, J. Math. Sci. (N. Y.), 111:2 (2002), 3476–3495
  21. А. Я. Хелемский, Лекции по функциональному анализу, 2-е изд., испр. и доп., МЦНМО, М., 2014, 560 с.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Syrtseva K.A., 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).