Квантовые повторители: текущие разработки и перспективы

Cover Page
  • Authors: Калачев А.А.1
  • Affiliations:
    1. Федеральный исследовательский центр «Казанский научный центр РАН»
  • Issue: Vol 53, No 8 (2023)
  • Pages: 609-621
  • Section: Обзоры (по материалам xlvii вавиловских чтений по люминесценции, москва, 12 апреля 2023 г.)
  • URL: https://journals.rcsi.science/0368-7147/article/view/255478
  • ID: 255478

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Описываются принципы работы квантового повторителя – устройства, предназначенного для распределения запутанных состояний квантовых систем на большие расстояния. Представлен обзор последних достижений в области экспериментальной реализации простейшего его варианта – квантового повторителя первого поколения, а также в области разработки ключевого его компонента – квантовой памяти. Обсуждаются ближайшие и долгосрочные перспективы развития исследований в этой области.

About the authors

А. А. Калачев

Федеральный исследовательский центр «Казанский научный центр РАН»

Author for correspondence.
Email: a.a.kalachev@mail.ru
Russian Federation, Казань, ул. Лобачевского, 2/31, 420111

References

  1. Kimble H.J. Nature, 453, 1023 (2008).
  2. Wehner S., Elkouss D., Hanson R. Science, 362, eaam9288 (2018).
  3. Fang K., Zhao J., Li X., Li Y., Duan R. Sci. China Inf. Sci., 66, 180509 (2023).
  4. Zapatero V., van Leent T., Arnon-Friedman R., et al. npj Quantum Inf., 9, 10 (2023).
  5. Cirac J.I., Ekert A.K., Huelga S.F., et al. Phys. Rev. A, 59, 4249 (1999).
  6. Cuomo D., Caleffi M., Cacciapuoti A.S. IET Quantum Commun., 1, 3 (2020).
  7. Broadbent A., Fitzsimons J., Kashefi E. Proc. the 50th Annual Symposium on Foundations of Computer Science (FOCS 2009) (Atlanta, GA, US, 2009, pp 517 – 526).
  8. Fitzsimons J.F. npj Quantum Inf., 3, 23 (2017).
  9. Jozsa R., Abrams D.S., Dowling J.P., Williams C.P. Phys. Rev. Lett., 85, 2010 (2000).
  10. Giovannetti V., Lloyd S., Maccone L. Nature, 412, 417 (2001).
  11. Kómár P., Kessler E., Bishof M., Jiang L., Sørensen A.S., Ye J., Lukin M.D. Nat. Phys., 10, 582 (2014).
  12. Ge W., Jacobs K., Eldredge Z., Gorshkov A.V., Foss-Feig M. Phys. Rev. Lett., 121, 043604 (2018).
  13. Zhuang Q., Zhang Z., Shapiro J.H. Phys. Rev. A, 97, 032329 (2018).
  14. Gottesman D., Jennewein T., Croke S. Phys. Rev. Lett., 109, 070503 (2012).
  15. Wootters W.K., Zurek W.H. Nature, 299, 802 (1982).
  16. Chen Y.A. et al. Nature, 589, 214 (2021).
  17. Salvail L., Peev M., Diamanti E., Alleaume R., Lutkenhaus N., Laenger T. J. Comput. Secur., 18, 61 (2010).
  18. Briegel H.-J., Dür W., Cirac J.I., Zoller P. Phys. Rev. Lett., 81, 5932 (1998).
  19. Dür W., Briegel H.-J., Cirac J.I., Zoller P. Phys. Rev. A, 59, 169 (1999).
  20. Z˙ ukowski M., Zeilinger A., Horne M.A., Ekert A.K. Phys. Rev. Lett., 71, 4287 (1993).
  21. Bennett C.H., Brassard G., Popescu S., Schumacher B., Smolin J.A., Wootters W.K. Phys. Rev. Lett., 76, 722 (1996).
  22. Deutsch D., Ekert A., Jozsa R., Macchiavello C., Popescu S., Sanpera A. Phys. Rev. Lett., 77, 2818 (1996).
  23. Devitt S.J., Munro W.J., Nemoto K. Rep. Prog. Phys., 76, 076001 (2013).
  24. Sangouard N., Simon C., de Riedmatten H., Gisin N. Rev. Mod. Phys., 83, 33 (2011).
  25. Munro W.J., Azuma K., Tamaki K., Nemoto K. IEEE J. Select. Top. Quantum Electron., 21, 78 (2015).
  26. Yan P.-S., Zhou L., Zhong W., Sheng Y.-B. Europhys. Lett., 136, 14001 (2021).
  27. Neuwirth J., Basset F.B., Rota M.B., Roccia E., Schimpf C., Jöns K.D., Rastelli A., Trotta R. Mater. Quantum Technol., 1, 043001 (2021).
  28. Wei S.-H., Jing B., Zhang X.-Y., Liao J.-Y., Yuan C.-Z., Fan B.-Y., Lyu C., Zhou D.-L., Wang Y, Deng G.-W., Song H.-Z., Oblak D., Guo G.-C., Zhou Q. Laser Photonics Rev., 16, 2100219 (2022).
  29. Azuma K., Economou S.E., Elkouss D., Hilaire P., Jiang L., Lo H.-K., Tzitrin I. ArXiv: 2212.10820 (2022).
  30. Muralidharan S., Li L., Kim J., Lütkenhaus N., Lukin M.D., Jiang L. Sci. Rep., 6, 20463 (2016).
  31. Muralidharan S., Kim J., Lütkenhaus N., Lukin M.D., Jiang L. Phys. Rev. Lett., 112, 250501 (2014).
  32. Bernardes N.K., Praxmeyer L., van Loock P. Phys. Rev. A, 83, 012323 (2011).
  33. Shchukin E., Schmidt F., van Loock P. Phys. Rev. A, 100, 032322 (2019).
  34. Collins O.A., Jenkins S.D., Kuzmich A., Kennedy T.A.B. Phys. Rev. Lett., 98, 060502 (2007).
  35. Azuma K., Bäuml S., Coopmans T., Elkouss D., Li B. Avs. Quantum Sci., 3, 014101 (2021).
  36. Coopmans T., Brand S., Elkouss D. Phys. Rev. A, 105, 012608 (2022).
  37. Childress L., Taylor J.M., Sorensen A.S., Lukin M.D. Phys. Rev. A, 72, 052330 (2005).
  38. Childress L., Taylor J.M., Sorensen A.S., Lukin M.D. Phys. Rev. Lett., 96, 070504 (2006).
  39. Sangouard N., Dubessy R., Simon C. Phys. Rev. A, 79, 042340 (2009).
  40. Asadi F.K., Lauk N., Wein S., Sinclair N., O’Brien C., Simon C. Quantum, 2, 93 (2018).
  41. Calsamiglia J., Lütkenhaus N. Appl. Phys. B, 72, 67 (2001).
  42. Lee S.-W., Ralph T.C., Jeong H. Phys. Rev. A, 100, 052303 (2019).
  43. Sinclair N., Saglamyurek E., Mallahzadeh H., Slater J.A., George M., Ricken R., Hedges M.P., Oblak D., Simon C., Sohler W., Tittel W. Phys. Rev. Lett., 113, 053603 (2014).
  44. Sangouard N., Simon C., Minar J., Zbinden H., de Riedmatten H., Gisin N. Phys. Rev. A, 76, 050301 (2007).
  45. Duan L.-M., Lukin M., Cirac J.I., Zoller P. Nature, 414, 413 (2001).
  46. Pirandola S. Commun. Phys., 2, 51 (2019).
  47. Pirandola S., Laurenza R., Ottaviani C., Banchi L. Nat. Commun., 8, 15043 (2017).
  48. Wu Y., Liu J., Simon C. Phys. Rev. A, 101, 042301 (2020).
  49. Shchukin E., van Loock P. Phys. Rev. Lett., 128, 150502 (2022).
  50. Kamin L., Shchukin E., Schmidt F., van Loock P. Phys. Rev. Res., 5, 023086 (2023).
  51. Wallnöfer J., Melnikov A.A., Dür W., Briegel H.J. Phys. Rev. X: Quantum, 1, 010301 (2020).
  52. Haldar S., Barge P.J., Khatri S., Lee H. ArXiv: 2303.00777 (2023).
  53. Werner R.F. Phys. Rev. A, 40, 4277 (1989).
  54. Razavi M., Piani M., Lütkenhaus N. Phys. Rev. A, 80, 032301 (2009).
  55. Jiang L., Taylor J.M., Khaneja N., Lukin M.D. Proc. Nat. Acad. Sci. U.S.A., 104, 17291 (2007).
  56. Brand S., Coopmans T., Elkouss D. IEEE J. Sel. Areas Commun., 38, 619 (2020).
  57. Chehimi M., Pouryousef S., Panigrahy N.K., Towsley D., Saad W. ArXiv: 2305.08696 (2023).
  58. Wallnöfer J., Hahn F., Wiesner F., Walk N., Eisert J. ArXiv: 2212.03896 (2022).
  59. Simon C., de Riedmatten H., Afzelius M., Sangouard N., Zbinden H., Gisin N. Phys. Rev. Lett., 98, 190503 (2007).
  60. Munro W., Harrison K., Stephens A., Devitt S.J., Nemoto K. Nat. Photonics, 4, 792 (2010).
  61. Van Dam S.B., Humphreys P.C., Rozpe˛dek F., Wehner S., Hanson R. Quantum Sci. Technol., 2, 034002 (2017).
  62. Chou C.-W., Laurat J., Deng H., Choi K.S., de Riedmatten H., Felinto D., Kimble H.J. Science, 316, 1316 (2007).
  63. Yuan Z.-S., Chen Y.-A., Zhao B., Chen S., Schmiedmayer J., Pan J.-W. Nature, 454, 1098 (2008).
  64. Yu Y., Ma F., Luo X.-Y., Jing B., Sun P.-F., Fang R.-Z., Yang C.-W., Liu H., Zheng M.-Y., Xie X.-P., Zhang W.-J., You L.-X., Wang Z., Chen T.-Y., Zhang Q., Bao X.-H., Pan J.-W. Nature, 578, 240 (2020).
  65. Li H., Dou J.-P., Pang X.-L., Yang T.-H., Zhang C.-N., Chen Y., Li J.-M., Walmsley I. A., Jin X.-M. Optica, 8, 925 (2021).
  66. Zhang C., Huang Y.-F., Liu B.-H., Li C.-F., Guo G.-C. Adv. Quantum Technol., 4, 2000132 (2021).
  67. Anwar A., Perumangatt C., Steinlechner F., Jennewein T., Ling A. Rev. Sci. Instrum., 92, 041101 (2021).
  68. Guo M. et al. Front. Phys., 18, 21303 (2023).
  69. Lei Y., Asadi F.K., Zhong T., Kuzmich A., Simon C., Hosseini M. ArXiv: 2304.09397 (2023).
  70. Slattery O., Ma L., Zong K., Tang X. J. Res. Nat. Inst. Stand. Technol., 124, 124019 (2019).
  71. Usmani I., Afzelius M., de Riedmatten H., Gisin N. Nat. Commun., 1, 12 (2010).
  72. Bonarota M., Le Gouët J.-L., Chanelière T. New J. Phys., 13, 013013 (2011).
  73. Clausen C., Usmani I., Bussières F., Sangouard N., Afzelius M., de Riedmatten H., Gisin N. Nature, 469, 508 (2011).
  74. Saglamyurek E., Sinclair N., Jin J., Slater J.A., Oblak D., Bussières F., George M., Ricken R., Sohler W., Tittel W. Nature, 469, 512 (2011).
  75. Lago-Rivera D., Grandi S., Rakonjac J.V., Seri A., de Riedmatten H. Nature, 594, 37 (2021).
  76. Liu X., Hu J., Li Z.-F., Li X., Li P.-Y., Liang P.-J., Zhou Z.-Q., Li C.-F., Guo G.-C. Nature, 594, 41 (2021).
  77. Zhao B., Chen Z.-B., Chen Y.-A., Schmiedmayer J., Pan J.-W. Phys. Rev. Lett., 98, 240502 (2007).
  78. Xu P., Yong H.-L., Chen L.-K., Liu C., Xiang T., Yao X.-C., Lu H., Li Z.-D., Liu N.-L., Li L., Yang T., Peng C.-Z., Zhao B., Chen Y.-A., Pan J.-W. Phys. Rev. Lett., 119, 170502 (2017).
  79. Pu Y.-F., Zhang S., Wu Y.-K., Jiang N., Chang W., Li C., Duan L.-M. Nat. Photonics, 15, 374 (2021).
  80. Businger M., Nicolas L., Mejia T.S., Ferrier A., Goldner P., Afzelius M. Nat. Commun., 13, 1 (2022).
  81. Yang T.-S., Zhou Z.-Q., Hua Y.-L., Liu X., Li Z.-F., Li P.-Y., Ma Y., Liu C., Liang P.-J., Li X., Xiao Y.-X., Hu J., Li C.-F., Guo G.-C. Nat. Commun., 9, 3407 (2018).
  82. Seri A., Lago-Rivera D., Lenhard A., Corrielli G., Osellame R., Mazzera M., de Riedmatten H. Phys. Rev. Lett., 123, 080502 (2019).
  83. Liu H., Wang M., Jiao H., Lu J., Fan W., Li S., Wang H. Opt. Express, 31, 7200 (2023).
  84. Reiserer A. Rev. Mod. Phys., 94, 041003 (2022).
  85. Kalb N., Reiserer A.A., Humphreys P.C., Bakermans J.J.W., Kamerling S.J., Nickerson N.H., Benjamin S.C., Twitchen D.J., Markham M., Hanson R. Science, 356, 928 (2017).
  86. Moehring D.L., Maunz P., Olmschenk S., Younge K.C., Matsukevich D.N., Duan L.-M., Monroe C. Nature, 449, 68 (2007).
  87. Slodicˇ ka L., Hétet G., Röck N., Schindler P., Hennrich M., Blatt R. Phys. Rev. Lett., 110, 083603 (2013).
  88. Krutyanskiy V., Canteri M., Meraner M., Bate J., Krcmarsky V., Schupp J., Sangouard N., Lanyon B.P. Phys. Rev. Lett., 130, 213601 (2023).
  89. Hofmann J., Krug M., Ortegel N., Gérard L., Weber M., Rosenfeld W., Weinfurter H. Science, 337, 72 (2012).
  90. Ritter S., Nölleke C., Hahn C., Reiserer A., Neuzner A., Uphoff M., Mücke M., Figueroa E., Bochmann J., Rempe G. Nature, 484, 195 (2012).
  91. Langenfeld S., Thomas P., Morin O., Rempe G. Phys. Rev. Lett., 126, 230506 (2021).
  92. Van Leent T., Bock M., Fertig F., Garthoff R., Eppelt S., Zhou Y., Malik P., Seubert M., Bauer T., Rosenfeld W., Zhang W., Becher C., Weinfurter H. Nature, 607, 69 (2022).
  93. Bernien H., Hensen B., Pfaff W., Koolstra G., Blok M.S., Robledo L., Taminiau T.H., Markham M., Twitchen D.J., Childress L., Hanson R. Nature, 497, 86 (2013).
  94. Hensen B., Bernien H., Dréau A.E., Reiserer A., Kalb N., Blok M.S., Ruitenberg J., Vermeulen R.F.L., Schouten R.N., Abellán C., Amaya W., Pruneri V., Mitchell M.W., Markham M., Twitchen D.J., Elkouss D., Wehner S., Taminiau T.H., Hanson R. Nature, 526, 682 (2015).
  95. Humphreys P.C., Kalb N., Morits J.P.J., Schouten R.N., Vermeulen R.F.L., Twitchen D.J., Markham M., Hanson R. Nature, 558, 268 (2018).
  96. Pompili M., Hermans S.L.N., Baier S., Beukers H.K.C., Humphreys P.C., Schouten R.N., Vermeulen R.F.L., Tiggelman M.J., dos Santos Martins L., Dirkse B., Wehner S., Hanson R. Science, 372, 259 (2021).
  97. Delteil A., Sun Z., Gao Wb., Togan E., Faelt S., Imamog˘ lu A. Nat. Phys., 12, 218 (2016).
  98. Stockill R., Stanley M.J., Huthmacher L., Clarke E., Hugues M., Miller A.J., Matthiesen C., Le Gall C., Atatüre M. Phys. Rev. Lett., 119, 010503 (2017).
  99. Saffman M., Walker T.G., Mølmer K. Rev. Mod. Phys., 82, 2313 (2010).
  100. Adams C.S. et al. J. Phys. B: At. Mol. Opt. Phys., 53, 012002 (2020).
  101. Yanglin Hu, Zhelun Zhang, Biao Wu. Chin. Phys. B, 30, 020308 (2021).
  102. Han Y., He B., Heshami K., Li C.-Z., Simon C. Phys. Rev. A, 81, 052311 (2010).
  103. Zhao B., Mueller M., Hammerer K., Zoller P. Phys. Rev. A, 81, 052329 (2010).
  104. Rozpe˛dek F., Yehia R., Goodenough K., Ruf M., Humphreys P.C., Hanson R., Wehner S., Elkouss D. Phys. Rev. A, 99, 052330 (2019).
  105. Abruzzo S., Kampermann H., Bruß D. Phys. Rev. A, 89, 012301 (2014).
  106. Panayi C., Razavi M., Ma X., Lütkenhaus N. New J. Phys., 16, 043005 (2014).
  107. Luong D., Jiang L., Kim J., Lütkenhaus N. Appl. Phys. B, 122, 96 (2016).
  108. Bhaskar M.K., Riedinger R., Machielse B., Levonian D.S., Nguyen C.T., Knall E.N., Park H., Englund D., Loncˇar M., Sukachev D.D., Lukin M.D. Nature, 5, 60 (2019).
  109. Boone K., Bourgoin J.-P., Meyer-Scott E., Heshami K., Jennewein T., Simon C. Phys. Rev., 91, 052325 (2015).
  110. Gündog˘ an M., Sidhu J.S., Henderson V., Mazzarella L., Wolters J., Oi D.K.L., Krutzik M. npj Quantum Inf., 7, 128 (2021).
  111. Liorni C., Kampermann H., Bruß D. New J. Phys., 23, 053021 (2021).
  112. Wallnöfer J., Hahn F., Gündog˘ an M., Sidhu J. S., Wiesner F., Walk N., Eisert J., Wolters J. Commun. Phys., 5, 169 (2022).
  113. Hsiao Y.-F., Tsai P.-J., Chen H.-S., Lin S.-X., Hung C.-C., Lee C.-H., Chen Y.-H., Chen Y.-F., Yu I. A., Chen Y.-C. Phys. Rev. Lett., 120, 183602 (2018).
  114. Wang Y., Li J., Zhang S., Su K., Zhou Y., Liao K., Du S., Yan H., Zhu S.-L. Nat. Photonics, 13, 346 (2019).
  115. Cao M., Hoffet F., Qiu S., Sheremet A.S., Laurat J. Optica, 7, 1440 (2020).
  116. Hedges M., Longdell J., Li Y., Sellars M. Nature, 465, 1052 (2010).
  117. Hosseini M., Sparkes B., Campbell G., Lam P.K. Buchler B.C. Nat. Commun., 2, 174 (2011).
  118. Sabooni M., Li Q., Kröll S., Rippe L. Phys. Rev. Lett., 110, 133604 (2013).
  119. Sparkes B., Bernu J., Hosseini M., Geng J., Glorieux Q., Altin P. A., Lam P.K., Robins N.P., Buchler B.C. New J. Phys., 15, 085027 (2013).
  120. Jobez P., Usmani I., Timoney N., Laplane C., Gisin N., Afzelius M. New J. Phys., 16, 083005 (2014).
  121. Cho Y.-W., Campbell G.T., Everett J.L., Bernu J., Higginbottom D.B., Cao M.T., Geng J., Robins N.P., Lam P.K., Buchler B.C. Optica, 3, 100 (2016).
  122. Duranti S., Wengerowsky S., Feldmann L., Seri A., Casabone B., de Riedmatten H. ArXiv: 2307.03509 (2023).
  123. Guo J., Feng X., Yang P., Yu Z., Chen L.Q., Yuan C.-H., Zhang W. Nat. Commun., 10, 148 (2019).
  124. England D.G., Fisher K.A.G., MacLean J.-P.W., Bustard P.J., Lausten R., Resch K.J., Sussman B.J. Phys. Rev. Lett., 114, 053602 (2015).
  125. Reim K., Michelberger P., Lee K., Nunn J., Langford N.K., Walmsley I.A. Phys. Rev. Lett., 107, 053603 (2011).
  126. England D.G., Michelberger P.S., Champion T.F.M., Reim K.F., Lee K.C., Sprague M. R., Jin X.-M., Langford N.K., Kolthammer W.S., Nunn J., Walmsley I.A. J. Phys. B: At. Mol. Opt. Phys., 45, 124008 (2012).
  127. Thiel C., Böttger T., Cone R. J. Lumin., 131, 353 (2011).
  128. Thiel C., Sun Y., Macfarlane R., Böttger T., Cone R.L. J. Phys. B: At. Mol. Opt. Phys., 45, 124013 (2012).
  129. Попова М. Оптика и спектроскопия, 119, 541 (2015).
  130. Probst S., Rotzinger H., Ustinov A., Bushev P. Phys. Rev. B, 92, 014421 (2015).
  131. Wolfowicz G., Maier-Flaig H., Marino R., Ferrier A., Vezin H., Morton J.J.L., Goldner P. Phys. Rev. Lett., 114, 170503 (2015).
  132. Xiang Z.-L., Ashhab S., You J., Nori F. Rev. Mod. Phys., 85, 623 (2013).
  133. Yang W., Wang Z.-Y., Liu R.-B. Front. Phys., 6, 2 (2011).
  134. Fraval E., Sellars M., Longdell J. Phys. Rev. Lett., 92, 077601 (2004).
  135. Longdell J., Alexander A., Sellars M. Phys. Rev. A, 74, 195101 (2006).
  136. Zhong M., Hedges M., Ahlefeldt R., Bartholomew J.G., Beavan S.E., Wittig S.M., Longdell J.J., Sellars M.J. Nature, 517, 177 (2015).
  137. Kukharchyk N., Sholokhov D., Morozov O., Korableva S.L., Kalachev A.A., Bushev P.A. New J. Phys., 20, 023044 (2018).
  138. Craiciu I., Lei M., Rochman J., Kindem J.M., Bartholomew J.G., Miyazono E., Zhong T., Sinclair N., Faraon A. Phys. Rev. Appl., 12, 024062 (2019).
  139. Li P.-Y., Huang J.-Y., Zhu T.-X., Liu C., Liu D.-C., Zhou Z.-Q., Li C.-F., Guo G.-C. J. Lumin., 225, 117344 (2020).
  140. Fukumori R., Huang Y., Yang J., Zhang H., Zhong T. Phys. Rev. B, 101, 214202 (2020).
  141. Gupta S., Wu X., Zhang H., Yang J., Zhong T. Phys. Rev. Appl., 19, 044029 (2023).
  142. Kukharchyk N., Sholokhov D., Morozov O., Korableva S.L., Kalachev A.A., Bushev P.A. Opt. Express, 28, 29166 (2020).
  143. Kukharchyk N., Sholokhov D., Morozov O., Korableva S.L., Cole J.H., Kalachev A.A., Bushev P.A. Opt. Lett., 43, 935 (2018).
  144. Katz O., Firstenberg O. Nat. Commun., 9, 2074 (2018).
  145. Katz O., Shaham R., Firstenberg O. Sci. Adv., 7, eabe9164 (2021).
  146. Dudin Y.O., Li L., Kuzmich A. Phys. Rev. A, 87, 031801 (2013).
  147. Heinze G., Hubrich C., Halfmann T. Phys. Rev. Lett., 111, 033601 (2013).
  148. Ma Y., Ma Y.-Z., Zhou Z.-Q., Li C.-F., Guo G.-C. Nat. Commun., 12, 2381 (2021).
  149. Yang S.-J., Wang X.-J., Bao X.-H., Pan J.-W. Nat. Photonics, 10, 384 (2016).
  150. Cho Y.W., Campbell G.T., Everett J.L., Bernu J., Higginbottom D.B., Cao M.T., Geng J., Robins N.P., Lam P.K., Buchler B.C. Optica, 3, 100 (2016).
  151. Ortu A., Holzäpfel A., Etesse J., Afzelius M. npj Quantum Inf., 8, 29 (2022).
  152. Longdell J., Fraval E., Sellars M.J., Manson N.B. Phys. Rev. Lett., 95, 063601 (2005).
  153. Holzäpfel A., Etesse J., Kaczmarek K.T., Tiranov A., Gisin N., Afzelius M. New J. Phys., 22, 063009 (2020).
  154. Ruf M., Wan N.H., Choi H., Englund D., Hanson R. J. Appl. Phys., 130, 070901 (2021).
  155. Stas P.J., Huan Y.Q., Machielse B., Knall E.N., Suleymanzade A., Pingault B., Sutula M., Ding S.W., Knaut C.M., Assumpcao D.R., Wei Y.-C., Bhaskar M.K., Riedinger R., Sukachev D.D., Park H., Loncˇar M., Levonian D.S., Lukin M.D. Science, 378, 557 (2022).
  156. Tan T.R., Gaebler J.P., Lin Y., Wan Y., Bowler R., Leibfried D., Wineland D.J. Nature, 528, 380 (2015).
  157. Inlek I.V., Crocker C., Lichtman M., Sosnova K., Monroe C. Phys. Rev. Lett., 118, 250502 (2017).
  158. Wang P., Luan C.-Y., Qiao M., Um M., Zhang J., Wang Y., Yuan X., Gu M., Zhang J., Kim K. Nat. Commun., 12, 233 (2021).
  159. Santra S., Muralidharan S., Lichtman M., Jiang L., Monroe C., Malinovsky V.S. New J. Phys., 21, 073002 (2019).
  160. Khatri S., Brady A.J., Desporte R.A., Bart M.P., Dowling J.P. npj Quantum Inf., 7, 4 (2021).
  161. Wan N.H., Lu T.-J.,, Chen K.C., Walsh M.P., Trusheim M.E., de Santis L., Bersin E.A., Harris I.B., et al. Nature, 583, 226 (2020).
  162. Seri A., Lago-Rivera D., Corrielli G., Lenhard A., Osellame R., Mazzera M., de Riedmatten H. Phys. Rev. Lett., 123, 080502 (2019).
  163. Keil M., Amit O., Zhou S., Groswasser D., Japha Y., Folman R. J. Mod. Opt., 63, 1840 (2016).
  164. Zugenmaier M., Dideriksen K.B., Sørensen A.S., Albrecht B., Polzik E.S. Commun. Phys., 1, 76 (2018).
  165. Dideriksen K.B., Schmieg R., Zugenmaier M., Polzik E.S. Nat. Commun., 12, 3699 (2021).
  166. Ji J.-W., Asadi F.K., Heshami K., Simon C. Phys. Rev. Appl., 19, 054063 (2023).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. The operating principle of the first generation gearbox. The communication line is divided into four elementary segments and contains three intermediate nodes, each of which contains two quantum memory devices (circles indicate memory devices, dotted lines indicate the presence of entanglement between them).

Download (112KB)
3. Fig.2. Examples of entanglement generation schemes in an elementary segment using two-photon (a) and single-photon (b) sources. In the case of single-photon sources, the memory devices share the single-photon excitation between themselves upon a successful Bell measurement, which is shown as half-filled circles.

Download (102KB)
4. Fig.3. Schemes of two-photon Bell measurement for entangled states in the polarization basis (a) and one-photon Bell measurement for entangled states in the Fock basis (b). The measurement efficiency is 1/2 because only two of the four states can be distinguished. In the first case, this requires a certain combination of coincidences of photocounts, as shown by the dotted lines, and in the second, a count on only one detector (BS is a beam splitter, PBS is a polarization beam splitter, |H ñ and |V ñ are single-photon states with orthogonal linear polarization, |0ñ and |1ñ are vacuum and one-photon states, respectively).

Download (52KB)
5. Fig.4. Postselection scheme for a two-photon entangled state. Having two distributed entangled states in the Fock basis |Y1±ñ, |Y2±ñ, one can perform a projection measurement onto the distributed two-photon entangled state |Y ±L R ñ by performing a single-photon Bell measurement at each node after reading the states from the quantum memory. The state to which the projection occurs is determined by the transmittance of the beam splitters and the relative phase of the incoming modes.

Download (56KB)
6. Fig.5. Capacity C (h, N) as a function of distance L. Direct communication (N = 0) is described by the dependence ~h (PLOB boundary), communication through a repeater with one node (N = 1) is described by the dependence ~ h1/2. A further increase in the number of nodes leads to an even greater increase in the maximum speed.

Download (73KB)
7. Fig.6. Dependences of the rate of entanglement distribution on the length of the communication line L for a scheme with a two-photon Bell measurement: 1 – one intermediate node (L0 = L/2), tm = ¥; 2 – one intermediate node (L0 = L/2), tm = 100 ms; 3 – without intermediate node (L0 = L). In all cases hm = 0.9, hs = 0.5, hd = 0.9.

Download (56KB)
8. Fig.7. The operating principle of the first generation CP using the entanglement clearing procedure. It is assumed that the clearing procedures are performed in one iteration, and each clearing procedure uses M = 2 copies, so that the total number of initial states is 16.

Download (178KB)
9. Fig.8. Dependence of quantum memory efficiency on storage time for some polyatomic systems in comparison with a similar dependence for a fiber optic delay line: cold rubidium [146, 149, 150] and cesium [113] atoms, cesium atoms at room temperature [144], Pr3+ : Y2SiO5 crystals [147, 152] and Eu3+ : Y2SiO5 [148, 151, 153]. An asterisk indicates an experiment in which a radiative quantum memory (DLCZ circuit) was used. A similar diagram with experiments performed before 2016 is presented in [150].

Download (102KB)

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).