Phase-pulse method for estimating the traveling time of a sound wave when measuring the speed of sound in a water medium

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The article considers the issues of increasing the accuracy of sound speed measurements in water actual both for standard installations and small-sized autonomous measuring devices. The methods for estimating the sound wave propagation time when measuring the sound speed using the time-of-flight method with a variable base are discussed. The general disadvantages of these methods are shown: low noise immunity of measurements, a small number of characteristic points of signals used to estimate time intervals, and the subjectivity of their selection. A version of the phase-pulse method is proposed that allows obtaining an integral estimate of the sound wave propagation time. A theoretical justification for the applicability of the method for measuring the sound speed in water is given. The propagation time is estimated by the frequency dependence of the sound wave phase incursion, which is obtained as the difference in phase spectra (cross phase spectrum) of copies of broadband pulses spaced apart in reception time. In the absence of sound dispersion, the cross phase spectrum is a proportional frequency dependence of the phase advance of a sound wave. Approximating the cross phase spectrum with a linear regression model, the frequency dependence is transformed into a numerical parameter, equal to the travel time of a sound wave with an accuracy of 2π.Using the cross phase spectrum allows us to exclude the subjective factor when choosing characteristic points of the signals, control the quality of the experiment, significantly increase the noise immunity of measurements, and improve the statistical characteristics of the resulting estimate. An experiment is described to test the proposed method. The obtained estimates of the speed of sound are not inferior in accuracy to empirical formulas and standardized tabular values. The obtained results will be useful in further research aimed at increasing the accuracy of sound speed measurements using the phase-pulse method to the accuracy required for reference installations.

Sobre autores

A. Isaev

Russian Metrological Institute of Technical Physics and Radio Engineering

Email: isaev@vniiftri.ru
ORCID ID: 0000-0002-0718-5234

Bibliografia

  1. Wayne D. Wilson. Speed of sound in sea water as a function of temperature, pressure, and salinity. Journal of the Acoustical Society of America, 32(6), 641–644 (1960). https://doi.org/10.1121/1.1908167
  2. Del Grosso V. A. New equation for the speed of sound in natural waters (with comparisons to other equations). Journal of the Acoustical Society of America, 56(4), 1084–1091 (1974). https://doi.org/10.1121/1.1903388
  3. Chen-Tung Chen, Frank J. Millero. Speed of sound in seawater at high pressures. Journal of the Acoustical Society of America, 62(5), 1129–1135 (1977). https://doi.org/10.1121/1.381646
  4. George S. K. Wong, Shi-ming Zhu. Speed of sound in seawater as a function of salinity, temperature, and pressure. Journal of the Acoustical Society of America, 97(3), 1732–1736 (1995). https://doi.org/10.1121/1.413048
  5. Микушин И. И., Серавин Г. Н. Методы и средства измерений скорости звука в море. Судостроение, СанктПетербург (2012).
  6. Серавин Г. Н., Микушин И. И., Лобанов В. Н. Прямые импульсные методы измерения скорости звука в жидкости. Известия ЮФУ. Технические науки. Тематический выпуск, (9(122)), 238–243 (2011).
  7. Бабий В. И. О метрологии скорости звука в жидкости. Акустический журнал, 63(3), 251–264 (2017). https://doi.org/10.7868/S0320791917030030 ; https://elibrary.ru/ysdmpr
  8. Белогольский В. А., Саморукова Л. М., Сильвестров С. В. Времяпролётный способ определения скорости звука в жидкой среде и устройство для его осуществления: Патент RU 2529734. Изобретения. Полезные модели, № 27 (2014).
  9. Liuqing Yang, Jun Zhang, Jiaheng Wang. Sound speed measurement using phase estimation method of pulse signal in water. Proc. conference 2021 OES China Ocean Acoustics (COA), 4–17 July 2021, Harbin, China. https://doi.org/10.1109/COA50123.2021.9519875
  10. Jun Zhang, Yi Chen, Jingzhao Ji. Accuracies for different measuring methods of sound speed in water. Proc. 25th International Congress on Sound and Vibration (ICSV 25), 8–12 July 2018, Hiroshima.
  11. Исаев А. Е., Поликарпов А. М. Примеры решения метрологических задач с использованием преобразования Гильберта для обработки данных. Альманах современной метрологии, (2(42)), 113–157 (2025).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».