Early diagnosis of renal cell carcinoma: use of a nanowire biosensor for detection of small nucleolar ribonucleic acid SNORA77 in patient’s blood
- Authors: Ivanov Y.D.1, Goldaeva K.V.2, Nevedrova E.D.2, Vinogradova A.V.1, Ableev A.N.2, Shumov I.D.2, Kozlov A.F.2, Kapustina S.I.2, Afonin O.N.2, Popov V.P.3, Glukhov A.V.4, Kushlinskii N.E.5, Stilidi I.S.5, Mamedli Z.Z.6, Enikeev D.V.7, Burundaeva N.N.7, Konev V.A.8, Kovalev O.B.8, Tatur V.Y.9, Ziborov V.S.2, Grishin L.I.10, Dolgoborodov A.Y.10, Petrov O.F.10, Novikov S.V.11, Yushkov E.S.12, Archakov A.I.2
-
Affiliations:
- Institute of Biomedical Chemistry (IBMC)
- Institute of Biomedical Chemistry
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences
- Novosibirsk Plant of Semiconductor Devices Vostok
- Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» of the Russian Ministry of Health
- N. N. Blokhin National Medical Research Center of Oncology оf the Ministry of Health of the Russian Federation
- Sechenov University
- Pirogov Russian National Research Medical University
- Foundation of Perspective Technologies and Novations
- Joint Institute for High Temperatures of the Russian Academy of Sciences
- Associate Printing-and-Publication Centre Technosphera
- National Research Nuclear University MEPhI
- Issue: Vol 74, No 5 (2025)
- Pages: 77-87
- Section: MEDICAL AND BIOLOGICAL MEASUREMENTS
- URL: https://journals.rcsi.science/0368-1025/article/view/380321
- ID: 380321
Cite item
Abstract
About the authors
Yu. D. Ivanov
Institute of Biomedical Chemistry (IBMC)
Email: yurii.ivanov.nata@gmail.com
ORCID iD: 0000-0001-5041-1914
SPIN-code: 7935-0461
K. V. Goldaeva
Institute of Biomedical Chemistry
Email: goldaeva_1996@mail.ru
ORCID iD: 0000-0002-4082-1247
E. D. Nevedrova
Institute of Biomedical Chemistry
Email: nevedrova.kat@yamdex.ru
ORCID iD: 0000-0003-2767-2299
A. V. Vinogradova
Institute of Biomedical Chemistry (IBMC)
Email: angel.tomlinson@yandex.ru
ORCID iD: 0009-0001-6044-3490
A. N. Ableev
Institute of Biomedical Chemistry
Email: ableev@mail.ru
ORCID iD: 0009-0004-3096-107X
I. D. Shumov
Institute of Biomedical Chemistry
Email: shum230988@yandex.ru
ORCID iD: 0000-0002-9795-7065
SPIN-code: 3827-1620
A. F. Kozlov
Institute of Biomedical Chemistry
Email: afkozlow@mail.ru
ORCID iD: 0000-0002-2117-8743
S. I. Kapustina
Institute of Biomedical Chemistry
Email: sveta.kapustina7.05@gmail.com
ORCID iD: 0000-0002-5119-9449
O. N. Afonin
Institute of Biomedical Chemistry
Email: sunweb@mail.ru
SPIN-code: 0009-0008-7947-3674
V. P. Popov
Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences
Email: popov@isp.nsc.ru
ORCID iD: 0000-0002-7415-1405
A. V. Glukhov
Novosibirsk Plant of Semiconductor Devices Vostok
Email: gluhov@nzpp.ru
ORCID iD: 0009-0008-3528-7060
N. E. Kushlinskii
Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» of the Russian Ministry of Health
Email: kne3108@gmail.com
ORCID iD: 0000-0002-3898-4127
I. S. Stilidi
Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» of the Russian Ministry of Health
Email: biochimia@yandex.ru
ORCID iD: 0000-0003-1490-8418
Z. Z. Mamedli
N. N. Blokhin National Medical Research Center of Oncology оf the Ministry of Health of the Russian Federation
Email: vsevolodmatveev@mail.ru
ORCID iD: 0000-0001-7748-9527
D. V. Enikeev
Sechenov University
Email: dvenikeev@gmail.com
ORCID iD: 0000-0001-7169-2209
N. N. Burundaeva
Sechenov University
Email: natalis8282@mail.ru
ORCID iD: 0000-0001-9947-9725
V. A. Konev
Pirogov Russian National Research Medical University
Email: konev60@mail.ru
ORCID iD: 0000-0002-1566-1771
O. B. Kovalev
Pirogov Russian National Research Medical University
Email: doctor87@list.ru
ORCID iD: 0000-0003-0273-6700
V. Y. Tatur
Foundation of Perspective Technologies and Novations
Email: v_tatur@mail.ru
ORCID iD: 0000-0002-6415-5189
V. S. Ziborov
Institute of Biomedical Chemistry
Email: ziborov.vs@yandex.ru
ORCID iD: 0000-0001-7942-3337
L. I. Grishin
Joint Institute for High Temperatures of the Russian Academy of Sciences
Email: lenya-grishin@mail.ru
ORCID iD: 0000-0002-3549-3736
A. Y. Dolgoborodov
Joint Institute for High Temperatures of the Russian Academy of Sciences
Email: aldol@ihed.ras.ru
ORCID iD: 0000-0001-7054-7341
O. F. Petrov
Joint Institute for High Temperatures of the Russian Academy of Sciences
Email: ofpetrov@ihed.ras.ru
ORCID iD: 0000-0002-6373-0305
S. V. Novikov
Associate Printing-and-Publication Centre Technosphera
Email: svnovikov59@mail.ru
ORCID iD: 0000-0002-0943-9488
E. S. Yushkov
National Research Nuclear University MEPhI
Email: esyushkov@mephi.ru
ORCID iD: 0009-0002-9161-0877
A. I. Archakov
Institute of Biomedical Chemistry
Email: alexander.archakov@ibmc.msk.ru
ORCID iD: 0000-0002-2290-8090
References
Tran J., Ornstein M. C. Clinical review on the management of metastatic renal cell carcinoma. JCO Oncology Practice, 18(3), 187–196 (2022). https://doi.org/10.1200/OP.21.00419 Hsieh J. J. et al. Renal cell carcinoma. Nature Reviews Disease Primers, 3(1), 1–19 (2017). https://doi.org/10.1038/nrdp.2017.9 Ljungberg B., Purdue M. P., Signoretti S. et al. European Association of Urology guidelines on renal cell carcinoma: the 2022 update. European Urology, 82(4), 399–410 (2022). https://doi.org/10.1016/j.eururo.2022.03.006 Sung H., Ferlay J., Siegel R. L. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 71(3), 209–249 (2021). https://doi.org/10.3322/caac.21660 Bosma N. A., Warkentin M. T., Gan C. L et al. Effi cacy and safety of fi rst-line systemic therapy for metastatic renal cell carcinoma: a systematic review and network meta-analysis. European Urology Open Science, 37, 14–26 (2022). https://doi.org/10.1016/j.euros.2021.12.007 Tenold M., Ravi P., Kumar M. et al. Current approaches to the treatment of advanced or metastatic renal cell carcinoma. American Society of Clinical Oncology Educational Book, 40, 187–196 (2020). https://doi.org/10.1200/EDBK_279881 Motzer R. J., Bander N. H., Nanus D. M. Renal-cell carcinoma. New England Journal of Medicine, 335(12), 865–875 (1996). https://doi.org/10.1056/NEJM199609193351207 Gibbons R. P., Montie J. E., Correa Jr. R. J. et al. Manifestations of renal cell carcinoma. Urology, 8(3), 201–206 (1976). https://doi.org/10.1016/0090-4295(76)90366-6 McLaughlin J. K., Lipworth L., Tarone R. E. Epidemiologic aspects of renal cell carcinoma. Seminars in oncology. WB Saunders, 33(5), 527–533 (2006). https://doi.org/10.1053/j.seminoncol.2006.06.010 Padala S. A., Barsouk A., Thandra K. C. et al. Epidemiology of renal cell carcinoma. World Journal of Oncology, 11(3), 79 (2020). https://doi.org/10.14740/wjon1279 Wein A. J., Barsouk A., etc. Campbell-Walsh Urology, 11th ed. Elsevier Health Sciences, Philadelphia (2016). Vasudev N. S., Wilson M., Stewart G. D. et al. Challenges of early renal cancer detection: symptom patterns and incidental diagnosis rate in a multicentre prospective UK cohort of patients presenting with suspected renal cancer. BMJ Open, 10(5), e035938 (2020). https://doi.org/10.1136/bmjopen-2019-035938 Wajahat M., Bracken C. P., Orang A. Emerging functions for snoRNAs and snoRNA-derived fragments. International Journal of Molecular Sciences, 22(19), 10193 (2021). https://doi.org/10.3390/ijms221910193 Huang Z., Du Y., Wen J, et al. SnoRNAs: functions and mechanisms in biological processes, and roles in tumor pathophysiology. Cell Death Discovery, 8(1), 259 (2022). https://doi.org/10.1038/s41420-022-01056-8 Lu B., Chen X., Liu X. et al. C/D box small nucleolar RNA SNORD104 promotes endometrial cancer by regulating the 2ʹ-O-methylation of PARP1. Journal of Translational Medicine, 20(1), 618 (2022). https://doi.org/10.1186/s12967-022-03802-z Chow R. D., Chen S. Sno-derived RNAs are prevalent molecular markers of cancer immunity. Oncogene, 37(50), 6442–6462 (2018). https://doi.org/10.1038/s41388-018-0420-z Mannoor K., Liao J., Jiang F. Small nucleolar RNAs in cancer. Biochimica et Biophysica Acta (BBA) – Reviews on Cancer, 1826(1), 121–128 (2012). https://doi.org/10.1016/j.bbcan.2012.03.005 Yang S., Rothman R. E. PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. The Lancet Infectious Diseases, 4(6), 337–348 (2004). https://doi.org/10.1016/S1473-3099(04)01044-8 Ro S., Park C., Jin J. et al. A PCR-based method for detection and quantifi cation of small RNAs. Biochemical and Biophysical Research Communications, 351(3), 756–763 (2006). https://doi.org/10.1016/j.bbrc.2006.10.105 Yang T., Zhang M., Zhang N. Modifi ed Northern blot protocol for easy detection of mRNAs in total RNA using radiolabeled probes. BMC Genomics, 23(1), 66 (2022). https://doi.org/10.1186/s12864-021-08275-w Ivanov Y. D., Romanova T.S., Malsagova K.A. et al. Use of silicon nanowire sensors for early cancer diagnosis. Molecules, 26(12), 3734 (2021). https://doi.org/10.3390/molecules26123734 Ambhorkar P., Wang Z., Ko H. et al. Nanowire-based biosensors: from growth to applications. Micromachines, 9(12), 679 (2018). https://doi.org/10.3390/mi9120679 Kim K., Park C., Kwon D. et al. Silicon nanowire biosensors for detection of cardiac troponin I (cTnI) with high sensitivity. Biosensors and Bioelectronics, 77, 695–701 (2016). https://doi.org/10.1016/j.bios.2015.10.008 Ivanov Y. D., Malsagova K. A., Pleshakova T. O., et al. Aptamer-Sensitized nanoribbon biosensor for ovarian cancer marker detection in plasma. Chemosensors, 9(8), 222 (2021). https://doi.org/10.3390/chemosensors9080222 Ivanov Y., Pleshakova T., Malsagova K. et al. Detection of marker miRNAs, associated with prostate cancer, in plasma using SOI-NW biosensor in direct and inversion modes. Sensors, 19(23), 5248 (2019). https://doi.org/10.3390/s19235248 Ivanov Y. D., Malsagova K. A., Popov V. P. et al. Nanoribbon-based electronic detection of a glioma-associated circular miRNA. Biosensors, 11(7), 237 (2021). https://doi.org/10.3390/bios11070237 Иванов Ю. Д., Неведрова Е. Д., Виноградова А. В. и др. Детекция кольцевых РНК hsa_circ_0031263, hsa_circ_0072715 и hsa_circ_0136666, ассоциированных с колоректальным раком, в плазме крови с помощью нанопроводных чипов. Альманах клинической медицины, 52(3), 120–131 (2024) Patolsky F., Zheng G., Hayden O. et al. Electrical detection of single viruses. Proceedings of the National Academy of Sciences of the United States of America, 101(39), 14017–14022 (2004). https://doi.org/10.1073/pnas.0406159101 Malsagova K. A., Pleshakova T. O., Kozlov A. F. et al. Detection of infl uenza virus using a SOI-nanoribbon chip, based on an N-type fi eld-effect transistor. Biosensors, 11(4), 119 (2021). https://doi.org/10.3390/bios11040119 Popov V. P., Antonova A. I., Frantsuzov P. A. et al. Properties of silicon-on-insulator structures and devices. Semiconductors, 35, 1030–1037 (2001). https://doi.org/10.1134/1.1403567 Ivanov Y., Pleshakova T., Malsagova K. et al. Detection of marker miRNAs, associated with prostate cancer, in plasma using SOI-NW biosensor in direct and inversion modes. Sensors, 19(23), 5248 (2019). https://doi.org/10.3390/s19235248 Mattson G., Conklin E., Desai S. et al. A practical approach to crosslinking. Molecular Biology Reports, 17, 167–183 (1993). https://doi.org/10.1007/BF00986726 Stern E., Wagner R., Sigworth F. J. et al. Importance of the Debye screening length on nanowire fi eld effect transistor sensors. Nano Letters, 7(11), pp. 3405–3409 (2007). https://doi.org/10.1021/nl071792z Laborde C., Pittino F., Verhoeven H. A. et al. Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays. Nature Nanotechnology, 10(9), pp. 791–795 (2015). https://doi.org/10.1038/nnano.2015.163 Namdari P., Daraee H., Eatemadi A. Recent advances in silicon nanowire biosensors: synthesis methods, properties, and applications. Nanoscale Research Letters, 11, 1–16 (2016). https://doi.org/10.1186/s11671-016-1618-z Zhang H., Kikuchi N., Ohshima N. et al. Design and fabrication of silicon nanowire-based biosensors with integration of critical factors: toward ultrasensitive specifi c detection of biomolecules. American Chemical Society Applied Materials and Interfaces, 12(46), 51808–51819 (2020). https://doi.org/10.1021/acsami.0c13984 Rissin D. M., Kan C. W., Campbell T. G. et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nature Biotechnology, 28(6), 595–599 (2010). https://doi.org/10.1038/nbt.1641 Banerjee D., Tateishi-Karimata H., Ohyama T. et al. Improved nearest-neighbor parameters for the stability of RNA/DNA hybrids under a physiological condition. Nucleic Acids Research, 48(21), 12042–12054 (2020). https://doi.org/10.1093/nar/gkaa572 SantaLucia J., Hicks D. The thermodynamics of DNA structural motifs. Annual Review of Biophysics, 33, 415–440 (2004). https://doi.org/10.1146/annurev.biophys.32.110601.141800
Supplementary files
