Identification of the laser beam fi eld in the emission plane and in the measurement plane
- Authors: Raitsin A.M.1, Ulanovskii M.V.2
-
Affiliations:
- Moscow Technical University of Communications and Informatics
- All-Russian Research Institute of Optical and Physical Measurements
- Issue: Vol 74, No 5 (2025)
- Pages: 49-56
- Section: OPTOPHYSICAL MEASUREMENTS
- URL: https://journals.rcsi.science/0368-1025/article/view/380311
- ID: 380311
Cite item
Abstract
The article considers an important practical problem that allows expanding the information on the laser beam parameters required for manufacturing and certification of laser sources. The only existing standardized numerical characteristic, the М 2 measure (GOST R ISO 11146-1-2008 “Lasers and laser installations (systems). Methods for measuring widths, divergence angles and propagation coefficients of laser beams”), which determines the quality of a laser beam, allows estimating the degree of similarity of the measured spatial distribution of the beam intensity only with the spatial distribution of the Gaussian intensity in the measurement plane. An alternative measure of similarity of the measured spatial distribution of the laser beam amplitude with a uniform distribution in the emitter plane or a spatial distribution of intensity with an arbitrary distribution in the measurement plane has been developed. It has been shown that the alternative measure of similarity when located in the emitter plane coincides with the aberration factor determining the source with the greatest axial luminous intensity. The proposed measure is universal and has a wider application than the М 2 measure, since it is associated with the characteristic of the field distribution homogeneity, the generalized area and the generalized diameter of the laser beam, which is an alternative to the beam diameter determined by GOST R ISO 11146-1-2008.
About the authors
A. M. Raitsin
Moscow Technical University of Communications and Informatics
Email: arcadiyram@rambler.ru
ORCID iD: 0000-0003-3148-4469
M. V. Ulanovskii
All-Russian Research Institute of Optical and Physical Measurements
Email: ulanovsky@vniiofi.ru
References
Lingqiang Meng, Qingqing Kong, Kunhao Ji et al. Characterization of beam quality of unstable laser beams with the multiple hyperbolas method. Results in Physics, 12, 38–45 (2019). https://doi.org/10.1016/j.rinp.2018.11.044 Hinton R. Laser Beam Quality: Beam propagation and quality factors: A primer. Laser Focus World (2019). Потёмкин А. К., Хазанов Е. А. Вычисление параметра М2 лазерных пучков методом моментов. Квантовая электроника, 35(11), 1042–1044 (2005). Райцин А. М., Улановский М. В. Основы идентификации пространственных распределений интенсивности лазерных пучков. Измерительная техника, (4), 30–36 (2022) https://doi.org/10.32446/0368-1025it.2022-4-30-36. Райцин А.М. Кумулянтный метод идентификации пространственных распределений интенсивности лазерного пучка. Измерительная техника (8) 22-29 (2024). https://doi.org/10.32446/0368-1025it.2024-8-22-29 Ананьев Ю.А. Оптические резонаторы и лазерные пучки. Наука, Москва (1990). Ананьев Ю.А. Оптические резонаторы и проблема расходимости лазерного излучения Наука, Москва (1979). Гудмен Дж. Введение в фурье-оптику. Мир, Москва (1970). Цыпкин Я. З. Информационная теория идентификации. Физматлит, Москва (1995). Ахманов С.А., Никитин С.Ю. Физическая оптика. Наука, Москва (2004). Райцин А.М., Фроловичев С.М. Проблема корректных измерений ширины и угла расходимости лазерного пучка. Оптика и спектроскопия, 132:5 (2024), 536–542. Киргетов М.В. Измерение диаметра пятна и расходимости пучка лазерного излучения теневым методом с использованием обобщённых параметров. Измерительная техника (11) 31-37 (2022) Грязнов М.И. Интегральный метод измерения импульсов. Сов. радио, Москва (1975).
Supplementary files
