Stochastic estimation using the Kalman filter as a state observer for dynamic systems
- Authors: Sokolov S.V.1, Pogorelov V.A.2, Reshetnikova I.V.1
-
Affiliations:
- Moscow Technical University of Communications and Informatics
- Don State Technical University
- Issue: Vol 74, No 5 (2025)
- Pages: 25-31
- Section: MEASUREMENTS IN INFORMATION TECHNOLOGIES
- URL: https://journals.rcsi.science/0368-1025/article/view/380304
- ID: 380304
Cite item
Abstract
About the authors
S. V. Sokolov
Moscow Technical University of Communications and Informatics
Email: s.v.s.888@yandex.ru
ORCID iD: 0000-0002-5246-841X
V. A. Pogorelov
Don State Technical University
Email: vadim-pva@narod.ru
ORCID iD: 0000-0002-5997-8068
I. V. Reshetnikova
Moscow Technical University of Communications and Informatics
Email: irina_reshetnikova@mail.ru
ORCID iD: 0000-0001-7318-7396
References
Ito K., Xiong K. Gaussian filters for nonlinear filtering problems. IEEE Transaction on Automatic Control, 45(5), 910–927 (2000). https://doi.org/10.1109/9.855552 Nørgaard M., Poulsen N. K., Ravn O. New developments in state estimation for nonlinear systems. Automatica, 36(11), 1627–1638 (2000). https://doi.org/10.1016/S0005-1098(00)00089-3 Arasaratnam I., Haykin S., Elliott R. J. Discrete-time nonlinear filtering algorithms using Gauss-Hermite quadrature. Proc. IEEE, 95(5), 953–977 (2007). '' target='_blank'>10.1109/JPROC.2007.894705 ' target='_blank'>https://doi: 10.1109/JPROC.2007.894705Arasaratnam I., Haykin S. Square-root quadrature Kalman filtering. IEEE Transaction on Signal Processing, 56(60), 2589–2593 (2008). https://doi.org/10.1109/TSP.2007.914964 Arasaratnam I., Haykin S. Cubature Kalman filters. IEEE Transaction on Automatic Control, 54(6), 1254–1269 (2009). https://doi.org/10.1109/TAC.2009.2019800 Arasaratnam I., Haykin S. Cubature Kalman smoother. Automatica, 47, 2245–2250 (2011). https://doi.org/10.1016/j.automatica.2011.08.005 Tang X., Wei J., Chen K. Square-root adaptive cubature Kalman filter with application to spacecraft attitude estimation. Proceeding of the 15th International Conference on Information Fusion, Singapore, 9–12 July 2012, pp. 1406–1412 (2012). Chandra K. P. B., Gu D.-W., Postlethwaite I. Square root cubature information filter. IEEE Sensors Journal, 13(2), 750–758 (2013). https://doi.org/10.1109/JSEN.2012.2226441 Van der Merwe R., Wan E. A. Effi cient derivative-free Kalman filters for online learning. Proceedings of the European Symposium on Artifi cial Neural Networks, 25–27 April 2001, Bruges, Belgium, pp. 205–210 (2001). Nørgaard M., Poulsen N. K., Ravn O. Advances in derivative-free state estimation for nonlinear systems. Technical Report IMM-REP-1998-15, Rev. ed., Technical University of Denmark (2004), available at: https://www2.imm.dtu.dk/pubdb/edoc/imm2706.pdf (accessed: 16.09.2025). D. Wang, H. Ly, J. Wu. Augmented Cubature Kalman filter for nonlinear RTK/MIMU integrated navigation with nonadditive noise. Measurement, 97, 111–125 (2017). https://doi.org/10.1016/j.measurement.2016.10.056 E. P. Herrera, H. Kaufmann. Adaptive methods of Kalman filtering for personal positioning systems. Proc. 23rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2010), Portland, OR, September 2010, pp. 584–589 (2010). Пугачев В. С., Синицын И.Н. Стохастические дифференциальные системы: Анализ и фильтрация. Наука, Москва (1990). Казаков И. Е. Статистическая теория систем управления в пространстве состояний. Наука, Москва (1975). Соколов С. В., Чуб Е. Г. Решение задачи автономной навигации на основе интеграции инерциальной и оптической навигационных систем. Автометрия, (6), 75–84 (2024). https://doi.org/10.15372/AUT20240608 ; https://elibrary.ru/BDOMRV
Supplementary files
