Stochastic estimation using the Kalman filter as a state observer for dynamic systems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The practical application of the Kalman filter in many technical applications leads to the divergence of the evaluation process. The existing methods of reducing estimation error and increasing the stability of the filtering procedure are focused only on assessing the state of specific systems. The analysis of the possibility of their generalized use is hampered by the nonlinear evolution of the a posteriori covariance matrix, which directly affects the convergence of the estimation error. To solve the problem of increasing the accuracy and stability of the filtration process, the article considers a stochastic estimation algorithm using the estimation vector at the output of the Kalman filter as an observer of the state vector of a dynamic system. Such use leads to an adaptive change in the intensity of measurement interference in the new filtering circuit, which reduces the frequency and amplitude of vibrations of the elements of the a posteriori covariance matrix and significantly increases the accuracy of the current estimate. The results of numerical modeling are presented, illustrating the effectiveness of the proposed approach. The proposed stochastic filtering method can be applied to a broad class of problems, including measurement processing, navigation, seismology, space research, and other areas.

About the authors

S. V. Sokolov

Moscow Technical University of Communications and Informatics

Email: s.v.s.888@yandex.ru
ORCID iD: 0000-0002-5246-841X

V. A. Pogorelov

Don State Technical University

Email: vadim-pva@narod.ru
ORCID iD: 0000-0002-5997-8068

I. V. Reshetnikova

Moscow Technical University of Communications and Informatics

Email: irina_reshetnikova@mail.ru
ORCID iD: 0000-0001-7318-7396

References

  1. Ito K., Xiong K. Gaussian filters for nonlinear filtering problems. IEEE Transaction on Automatic Control, 45(5), 910–927 (2000). https://doi.org/10.1109/9.855552
  2. Nørgaard M., Poulsen N. K., Ravn O. New developments in state estimation for nonlinear systems. Automatica, 36(11), 1627–1638 (2000). https://doi.org/10.1016/S0005-1098(00)00089-3
  3. Arasaratnam I., Haykin S., Elliott R. J. Discrete-time nonlinear filtering algorithms using Gauss-Hermite quadrature. Proc. IEEE, 95(5), 953–977 (2007). '' target='_blank'>10.1109/JPROC.2007.894705' target='_blank'>https://doi: 10.1109/JPROC.2007.894705
  4. Arasaratnam I., Haykin S. Square-root quadrature Kalman filtering. IEEE Transaction on Signal Processing, 56(60), 2589–2593 (2008). https://doi.org/10.1109/TSP.2007.914964
  5. Arasaratnam I., Haykin S. Cubature Kalman filters. IEEE Transaction on Automatic Control, 54(6), 1254–1269 (2009). https://doi.org/10.1109/TAC.2009.2019800
  6. Arasaratnam I., Haykin S. Cubature Kalman smoother. Automatica, 47, 2245–2250 (2011). https://doi.org/10.1016/j.automatica.2011.08.005
  7. Tang X., Wei J., Chen K. Square-root adaptive cubature Kalman filter with application to spacecraft attitude estimation. Proceeding of the 15th International Conference on Information Fusion, Singapore, 9–12 July 2012, pp. 1406–1412 (2012).
  8. Chandra K. P. B., Gu D.-W., Postlethwaite I. Square root cubature information filter. IEEE Sensors Journal, 13(2), 750–758 (2013). https://doi.org/10.1109/JSEN.2012.2226441
  9. Van der Merwe R., Wan E. A. Effi cient derivative-free Kalman filters for online learning. Proceedings of the European Symposium on Artifi cial Neural Networks, 25–27 April 2001, Bruges, Belgium, pp. 205–210 (2001).
  10. Nørgaard M., Poulsen N. K., Ravn O. Advances in derivative-free state estimation for nonlinear systems. Technical Report IMM-REP-1998-15, Rev. ed., Technical University of Denmark (2004), available at: https://www2.imm.dtu.dk/pubdb/edoc/imm2706.pdf (accessed: 16.09.2025).
  11. D. Wang, H. Ly, J. Wu. Augmented Cubature Kalman filter for nonlinear RTK/MIMU integrated navigation with nonadditive noise. Measurement, 97, 111–125 (2017). https://doi.org/10.1016/j.measurement.2016.10.056
  12. E. P. Herrera, H. Kaufmann. Adaptive methods of Kalman filtering for personal positioning systems. Proc. 23rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2010), Portland, OR, September 2010, pp. 584–589 (2010).
  13. Пугачев В. С., Синицын И.Н. Стохастические дифференциальные системы: Анализ и фильтрация. Наука, Москва (1990).
  14. Казаков И. Е. Статистическая теория систем управления в пространстве состояний. Наука, Москва (1975).
  15. Соколов С. В., Чуб Е. Г. Решение задачи автономной навигации на основе интеграции инерциальной и оптической навигационных систем. Автометрия, (6), 75–84 (2024). https://doi.org/10.15372/AUT20240608 ; https://elibrary.ru/BDOMRV

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).