State primary standard for units of luminous intensity and luminous flux GET 5-2024

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The history of the modernization of the national standard for the unit of luminous intensity in Russia is presented: from the establishment of the first state light standard in 1925 at Main Chamber of Weights and Measures (today – the D. I. Mendeleev Institute for Metrology) under the leadership of P. I. Tikhodeev to its current version – the State primary standard for units of luminous intensity and luminous fl ux GET 5-2024. As a result of the latest modernization, the GET 5-2024 now includes newly developed and manufactured by All-Russian Research Institute for Optical and Physical Measurements standard facilities, based on the latest research findings. For the first time in global practice, the unit of luminous intensity – the candela – is reproduced in GET 5-2024 using a high-temperature blackbody model operating at a fixed thermodynamic temperature of 2856.67 K, corresponding to the phase transition melting point of the molybdenum-carbon compound δ(MoC)-C. This approach has enabled an expanded uncertainty in the reproduction of the candela not exceeding 0.2 % at the level of 388.52 cd (with a coverage factor 2). Additionally, the use of a variable-temperature blackbody model allows for the reproduction of luminous intensity in the range from 1 to 20000 cd, with an expanded uncertainty not exceeding 0.24 % (with a coverage factor 2). The unit of total luminous fl ux – the lumen – is reproduced using a goniometric method with a specially developed goniophotometer. The reproduction range for luminous fl ux is from 1 to 3500 lm, with an expanded uncertainty of 0.22–0.28 % (with a coverage factor 2). Thus, the modernization of GET 5-2024 has extended the reproduction ranges of the units of luminous intensity and luminous fl ux and improved the accuracy of their realization. The improved GET 5-2024 allows the reproduction of the unit of luminous intensity in accordance with the recommendations of the International Committee of Weights and Measures, which ensures international compatibility of the results of scientific and applied measurements, their accuracy, and also contributes to improving the quality of industrial products, increasing transport safety, etc.

About the authors

B. B. Khlevnoy

All-Russian Research Institute for Optical and Physical Measurements

Email: khlevnoy-m4@vniiofi.ru
ORCID iD: 0000-0001-9502-650X

E. A. Ivashin

All-Russian Research Institute for Optical and Physical Measurements

Email: ivashin@vniiofi.ru
ORCID iD: 0009-0001-0912-0477

E. A. Ivashin

All-Russian Research Institute for Optical and Physical Measurements

Email: otryaskin@vniiofi.ru

D. A. Otryaskin

All-Russian Research Institute for Optical and Physical Measurements

Email: tishchenko@vniiofi.ru
ORCID iD: 0000-0002-6949-9028

I. A. Grigoryeva

All-Russian Research Institute for Optical and Physical Measurements

Email: grigoryeva-m4@vniiofi.ru
ORCID iD: 0009-0005-4350-7228

D. V. Dobroserdov

All-Russian Research Institute for Optical and Physical Measurements

Email: dobroserdov@vniiofi.ru

M. V. Solodilov

All-Russian Research Institute for Optical and Physical Measurements

Email: solodilov@vniiofi.ru
ORCID iD: 0009-0003-8929-4649

S. A. Ogarev

All-Russian Research Institute for Optical and Physical Measurements

Email: ogarev-m4@vniiofi.ru

V. R. Gavrilov

All-Russian Research Institute for Optical and Physical Measurements

Email: gavrilov@vniiofi.ru

S. N. Negoda

All-Russian Research Institute for Optical and Physical Measurements

Email: snegoda@vniiofi.ru

I. S. Filimonov

All-Russian Research Institute for Optical and Physical Measurements

Email: filimonov@vniiofi.ru

References

  1. Тиходеев П. М. Создание нового светового эталона в виде полного излучателя (черного тела). Сборник трудов ВНИИМ, (10(55)), 7–28 (1941).
  2. Тиходеев П. М. Новый государственный световой эталон СССР. 1-я тип. Изд-ва Акад. наук СССР, Москва, Ленинград (1949).
  3. Sapritsky V. I. A new standаrd for the Candela in the USSR. Metrologia, 24(2), 53–59 (1987). https://doi.org/10.1088/0026-1394/24/2/001 ; https://elibrary.ru/xltvee
  4. Sapritsky V. I. National primary radiometric standards of the USSR. Metrologia, 27(2), 53–60 (1990). https://doi.org/10.1088/0026-1394/27/2/002 ; https://elibrary.ru/xoqkjx
  5. Саприцкий В. И., Морозова С. П., Огарев С. А., Павлович М. Н., Панфилов А. С., Хлевной Б. Б. Обеспечение единства измерений величин, характеризующих некогерентное оптическое излучение. Измерительная техника, (11), 12–16 (2005). https://elibrary.ru/pdxsjb
  6. Хлевной Б. Б. Метрологические исследования эталонных пирографитовых высокотемпературных черных тел. Измерительная техника, (12), 26–30 (2001).
  7. Хлевной Б. Б. Использование высокотемпературных фазовых переходов эвтектик для прецизионного воспроизведения радиометрических величин в видимой и УФ области спектра. Измерительная техника, (5), 14–17 (2001).
  8. Ciddor P. E. Refractive index of air: new equations for the visible and near infrared. Applied Optics, 35(9), 1566–1573 (1996). https://doi.org/10.1364/AO.35.00156 6
  9. Ohno Yo., Goodman T., Blattner P. et al. Principles governing photometry (2nd edition). Metrologia, 57(2), 020401 (2020). https://doi.org/10.1088/1681-7575/ab72f1 ; https://elibrary.ru/txretf
  10. Woolliams E. R., Anhalt K., Ballico M. et al. Thermodynamic temperature assignment to the point of infl ection of the melting curve of high-temperature fixed points. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374, 20150044 (2016). https://doi.org/10.1098/rsta.2015.0044 ; https://elibrary.ru/wrwwgz
  11. Khlevnoy B., Grigoryeva I., Anhalt K., Waehmer M., Ivashin E., Otryaskin D., Solodilov M. and Sapritsky V. Development of large-area high-temperature fixed-point blackbodies for photometry and radiometry. Metrologia, 55(2), S43–S51 (2018). https://doi.org/10.1088/1681-7575/aaa16a ; https://elibrary.ru/xyefi t
  12. Огарев С. А., Хлевной Б. Б., Самойлов М. Л., Отряскин Д. А., Григорьева И. А., Солодилов М. В., Саприцкий В. И. Высокотемпературные модели черного тела для фотометрии, радиометрии и радиационной термометрии . Измерительная техника, (11), 48–51 (2015). https://elibrary.ru/svpjlw
  13. Khlevnoy B. B., Grigoryeva I. A., Ibragimov N. A. New method of filling of high-temperature fixed-point cells based on metal-carbon eutectics/peritectics. International Journal of Thermophysics, 32, 1763–1772 (2011). https://doi.org/10.1007/s10765-011-0998-7 ; https://elibrary.ru/peausr
  14. Khlevnoy B., Grigoryeva I., Ivashin E., Otryaskin D., Solodilov M. The candela realisation using molybdenum carbon fixed-point blackbody. Metrologia, 61(5), 055011 (2024). https://doi.org/10.1088/1681-7575/ad7739 ; https://elibrary.ru/wbutku
  15. Sapritsky V., Prokhorov A. Effective Emissivity. In: Blackbody Radiometry. Springer Series in Measurement Science and Technology. Springer, Cham. (2020). https://doi.org/10.1007/978-3-030-57789-6_4
  16. Ивашин Е. А., Отряскин Д. А., Столяревская Р. И., Хлевной Б. Б. Создание и совершенствование эталонной базы световых измерений во ВНИИОФИ. Светотехника, (6), 4–14 (2024). https://elibrary.ru/vjsaxr

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).