Method for assessing the inertia of carbon dioxide gas exchange across the water-air interface
- Authors: Ageev I.M.1, Rybin Y.M.1
-
Affiliations:
- Moscow Aviation Institute (National Research University)
- Issue: Vol 74, No 2 (2025)
- Pages: 106-110
- Section: PHYSICOCHEMICAL MEASUREMENTS
- URL: https://journals.rcsi.science/0368-1025/article/view/351176
- ID: 351176
Cite item
Abstract
The article considers changes in water properties under the influence of various external factors and points out the absence of a generally accepted technique for accounting for the effect of air on distilled water. The possibility of instrumental assessment of the effect of carbon dioxide CO2 on the electrical conductivity of distilled water is analyzed. For this purpose, the inertia of CO2 gas exchange at the water/air interface in sealed conductometric cells with a degree of filling with distilled water within 10–100 % and water heating (cooling) rates of 0.04–2.00 °C·min–1 was experimentally studied. A method for numerical assessment of the inertia of CO2 gas exchange at the water/air interface using a special coefficient of gas exchange inertia is proposed. This coefficient is calculated based on the ratio of the change in the specific electrical conductivity of water to the average value of this parameter in the “heating – cooling” mode. When measuring the electrical conductivity of water, its temperature varied within 20–55 °C. Based on the results of the experiments, the dependences of the gas exchange inertia coefficient on the water heating rate at different cell filling factors were obtained. It was shown that the gas exchange inertia is maximum at the maximum water heating (cooling) rate and minimum cell filling with water. The highest value of the CO2 gas exchange inertia coefficient in the experiments was about 8 %. The results obtained can be used in practice for quantitative assessment of the permeability of the water/air interface for CO2 molecules under various external influences on water.
About the authors
I. M. Ageev
Moscow Aviation Institute (National Research University)
Email: imageev@mail.ru
ORCID iD: 0000-0002-4947-3373
Yu. M. Rybin
Moscow Aviation Institute (National Research University)
Email: rym49@ramblerl.ru
ORCID iD: 0009-0009-8582-4538
References
Захаров С. Д., Мосягина И. В. Кластерная структура воды (обзор). ФИАН, Москва, препринт № 11 (2011). https://elibrary.ru/qkctdj Маленков Г. Г. Структура и динамика жидкой воды. Журнал структурной химии, 47(S7), 5–35 (2006). https://elib rary.ru/shudht Chen H., Voth G. A., Agmon N. Kinetics of proton migration in liquid water. The Journal of Physical Chemistry B, 114(1), 333–339 (2010). https://doi.org/10.1021/jp908126a Gileadi E., Kirowa-Eisner Е. Electrolytic conductivity – the hopping mechanism of the proton and beyond. Electrochimica Acta, 51(27), 6003–6011 (2006). https://doi.org/10.1016/j.electacta.2006.03.084; https://elibrary.ru/metmcp Васин А. А., Волков А. А. Положение дел в понимании свойств жидкой воды: возможная альтернатива. Биофизика, 66(5), 837–844 (2021). https://doi.org/10.31857/S000630292105001X Лобышев В. И. Вода как сенсор слабых воздействий физической и химической природы. Российский химический журнал, LI(1), 107–114 (2007). https://eli brary.ru/hfehah Агеев И. М., Рыбин Ю. М. Измерительный комплекс для мониторинга углекислого газа в воздухе. Измерительная техника, (4), 68–71 (2021). https://doi.org/10.32446/0368-1025it.20231-4-68-71; https://elibrary.ru/jtuolv Roeselová M., Vieceli J., Dang L. X., Garrett B. C., Tobias D. J. Hydroxyl radical at the air-water interface. Journal of the American Chemical Society, 126(50), 16308–16309 (2004). https://doi.org/10.1021/ja045552m Зенченко С. С. Исследование динамики поверхностной пленки воды при различных условиях тепломассообмена на границе раздела «вода – воздух». Труды Крыловского государственного научного центра, 2(384), 112–120 (2018). https://doi.org/10.24937/2542-2324-2018-2-384-112-120; https://elibrary.ru/xslroh Mishra H., Enami S., Nielsen R. J., Hoffmann M. R., Goddard W. A., Colussi A. J. Dramatically enhance proton transfer through water interfaces. Proceedings of the National Academy of Sciences of the United States of America, 109(26), 10228– 10232 (2012). https://doi.org/10.1073/pnas.1200949109; https://elibrary.ru/rihdat Агеев И. М., Рыбин Ю. М. Динамика изменения температурного коэффициента электропроводности дистиллированной воды в кондуктометрических ячейках при нагреве и охлаждении. Измерительная техника, 73(1), 56–60 (2024). https://doi.org/10.32446/0368-1025it.2024-1-56-60; https://elibrary.ru/xxjgef Агеев И. М., Рыбин Ю. М. Особенности измерения электропроводности дистиллированной воды при контакте с воздухом. Измерительная техника, (10), 68–71 (2019). https://doi.org/10.32446/0368-1025it.2019-10-68-71; https://elibrary.ru/tisxqm Краткий справочник физико-химических величин. Под ред. Мищенко К. П. и Равделя А. А. Химия, Ленинград (1967). Light T . S., Kingman E. A., Bevilacqua A. S. The conductivity of low concentrations of CO2 dissolved in ultrapure water from 0–100 °C. 209th American Chemical Society National Meeting, Anaheim, CA (1995). Light T . S., Licht S., Bevilacqua A. C. Morash K. R. The Fundamental conductivity and resistivity of water. Electrochemical and Solid-State Letters, 8(1), E16–E19 (2005). https://doi.org/10.1149/1.1836121
Supplementary files
