Determination of computer-generated hologram universal quantization method for optical image reconstruction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of optical reconstruction of object images using display of quantized computer-generated holograms on a high-speed digital micromirror device is considered. The quantization of light distributions is widely used for information storage, transmission, processing and compression. To determine the most universal hologram quantization method, four iterative, four noniterative quantization methods, and two methods proposed earlier by the authors of this paper and based on noniterative analysis of the intensity distribution histogram, are investigated. The processing (quantization) rate and quality of images optically reconstructed with computer-generated holograms were analyzed for the methods. The holograms were displayed on a digital micromirror device. Object images were reconstructed in laser light. The quality of reconstruction was assessed using quality metrics such as structural similarity index, correlation coefficient and speckle contrast. It was found that the quality of reconstructed images for the histogram methods is higher by 19 % compared to non-iterative methods and by 15 % compared to resource-intensive iterative methods. The rate of hologram quantization by the developed histogram methods is an order of magnitude higher than the rate of iterative methods. Joint accounting of relative intensity and the specifi ed quality metrics is realized by calculation of the target function. The target function of histogram methods exceeds its values of non-iterative and iterative methods by 5 and 2 %, respectively. The obtained results demonstrate the advantages of the histogram methods (high quality of quantization and little time of image processing), in comparison with the other ones for image reconstruction from binary holograms. Thus the histogram quantization methods are recommended for optical reconstruction of volumetric scenes, compression of holographic data, and high-speed modulation of light fi elds.

About the authors

A. S. Ovchinnikov

ational Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: pik.nik19@mail.ru
ORCID iD: 0009-0001-3678-5722

A. A. Volkov

ational Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: mr.a.a.volkov@gmail.com
ORCID iD: 0009-0008-4213-9373

A. A. Kerov

ational Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: andrey.kerov@gmail.com
ORCID iD: 0009-0008-4682-8117

A. V. Shifrina

ational Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: avshifrina@gmail.com
ORCID iD: 0000-0001-7816-5989

E. K. Petrova

ational Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: EKPetrova@mephi.ru
ORCID iD: 0000-0002-6764-7664

P. A. Cheremkhin

ational Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: cheremhinpavel@mail.ru
ORCID iD: 0000-0003-3556-2663

References

  1. He Z., Sui X., Jin G., Chu D., Cao L. Optimal quantization for amplitude and phase in computer-generated holography. Optics Express, 29(1), 119 (2021). https://doi.org/10.1364/oe.414160
  2. Liang C., Wang J., Huang T., Dai Q., Li Z., Yu S., Li G., Zheng G. Structural-color meta-nanoprinting embedding multidomain spatial light fi eld information. Nanophotonics, 13(9), 1665–1675 (2024). https://doi.org/10.1515/nanoph-2024-0019
  3. Kumar A., Nirala A. K. Surface topographic characterization of optical storage devices by Digital Holographic Microscopy. Micron, 170, 103459 (2023). https://doi.org/10.1016/j.micron.2023.103459
  4. Евтихиев Н. Н., Родин В. Г., Савченкова Е. А., Стариков Р. С., Черёмхин П. А. Адаптивный итеративный метод подбора весовых коэффициентов операции диффузии ошибки для бинаризации цифровых голограмм. Измерительная техника, (6), 41–45 (2022). https://doi.org/32446/0368-1025it.2022-6-41-45
  5. Злоказов Е. Ю., Минаева Е. Д., Родин В. Г., Стариков Р. С., Черёмхин П. А., Шифрина А. В. Методы синтеза дифракционных оптических элементов: оперативное и качественное формирование трёхмерных объектов из набора плоских сечений. Измерительная техника, (11), 45–51 (2023). https://doi.org/10.32446/0368-1025it.2023-11-45-51
  6. Georgieva A., Belashov A. V., Petrov N. V. Optimization of DMD-based independent amplitude and phase modulation by analysis of target complex wavefront. Scientific Reports, 12(1), 1–13 (2022). https://doi.org/10.1038/s41598-022-11443-x
  7. Sha J., Wojcik A., Wetherfi eld B., Yu J., Wilkinson T. D. Multi frame holograms batched optimization for binary phase spatial light modulators. Scientific Reports, 14(1), 1–10 (2024). https://doi.org/10.1038/s41598-024-70428-0
  8. Lee B., Kim D., Lee S., Chen C., Lee B. High-contrast, speckle-free, true 3D holography via binary CGH optimization. Scientific Reports, 12(1), 1–12 (2022). https://doi.org/10.1038/s41598-022-06405-2
  9. Hu C., Yang G., Xie H. 3D information transmission of a computer-generated hologram using a quantum compensation hybrid neural network. Optics Express, 32(13), 23736 (2024). https://doi.org/10.1364/oe.509846
  10. Shi Z., Wan Z., Zhan Z., Liu K., Liu Q., Fu X. Super-resolution orbital angular momentum holography. Nature Communications, 14(1), 1–13 (2023). https://doi.org/10.1038/s41467-023-37594-7
  11. Cheremkhin P. A., Kurbatova E. A. Wavelet compression of off-axis digital holograms using real/imaginary and amplitude/ phase parts. Scientific Reports, 9(1), 1–13 (2019). https://doi.org/10.1038/s41598-019-44119-0
  12. Shortt A. E., Naughton T. J., Javidi B. Histogram approaches for lossy compression of digital holograms of threedimensional objects. IEEE Transactions on Image Processing, 16(6), 1548–1556 (2007). https://doi.org/10.1109/TIP.2007.894269
  13. Soner B., Ulusoy E., Tekalp A., Urey H. Realizing a low-power head-mounted phase-only holographic display by lightweight compression. IEEE Transactions on Image Processing, 29, 4505–4515 (2020). https://doi.org/10.1109/TIP.2020.2972112
  14. Darakis E., Soraghan J. J. Use of fresnelets for phase-shifting digital hologram compression. IEEE Transactions on Image Processing, 15(12), 3804–3811 (2006). https://doi.org/10.1109/TIP.2006.884918
  15. Choi K., Kim J., Lim Y., Lee B. Full parallax viewing-angle enhanced computer-generated holographic 3D display system using integral lens array. Optics Express, 13(26), 10494 (2005). https://doi.org/10.1364/opex.13.010494
  16. Sui X., He Z., Chu D., Cao L. Non-convex optimization for inverse problem solving in computer-generated holography. Light: Science and Applications, 13(1) (2024). https://doi.org/10.1038/s41377-024-01446-w
  17. Yang H., He P., Ou K., Hu Y., Jiang Y., Ou X., Jia H., Xie Z., Yuan X., Duan H. Angular momentum holography via a minimalist metasurface for optical nested encryption. Light: Science and Applications, 12(1) (2023). https://doi.org/10.1038/s41377-023-01125-2
  18. Yang D., Seo W., Yu H., Kim S. Il, Shin B., Lee C. K., Moon S., An J., Hong J. Y., Sung G., Lee H. S. Diffractionengineered holography: Beyond the depth representation limit of holographic displays. Nature Communications, 13(1), 1–11 (2022). https://doi.org/10.1038/s41467-022-33728-5
  19. Li D., Jabbireddy S., Zhang Y., Metzler C., Varshney A. Instant-SFH: Non-Iterative sparse Fourier holograms using perlin noise. Sensors, 24(22), 1–15 (2024). https://doi.org/10.3390/s24227358
  20. Ovchinnikov A. S., Krasnov V. V., Cheremkhin P. A., Rodin V. G., Savchenkova E. A., Starikov R. S., Evtikhiev N. N. What binarization method is the best for amplitude inline fresnel holograms synthesized for divergent beams using the direct search with random trajectory technique? Journal of Imaging, 9(2), 28 (2023). https://doi.org/10.3390/jimaging9020028
  21. Savchenkova E. A., Ovchinnikov A. S., Rodin, V. G., Starikov R. S., Evtikhiev N. N., Cheremkhin P. A. Adaptive noniterative histogram-based hologram quantization. Optik, 311, 171933 (2024). https://doi.org/10.1016/j.ijleo.2024.171933
  22. Kanungo T., Mount D. M., Netanyahu N. S., Piatko C. D., Silverman R., Wu A. Y. An efficient k-means clustering algorithms: Analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 881–892 (2002). https://doi.org/10.1109/TPAMI.2002.1017616
  23. Brunet-Saumard C., Genetay E., Saumard A. K-bMOM: A robust Lloyd-type clustering algorithm based on bootstrap median-of-means. Computational Statistics and Data Analysis, 167, 107370 (2022). https://doi.org/10.1016/j.csda.2021.107370
  24. Lloyd S. P. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2), 129–137 (1982). https://doi.org/10.1109/TIT.1982.1056489
  25. Max J. Quantizing for minimum distortion. IRE Transactions on Information Theory, 6(1), 7–12 (1960). https://doi.org/10.1109/TIT.1960.1057548
  26. Kurbatova E. A., Cheremkhin P. A., Evtikhiev N. N., Krasnov V. V., Starikov S. N. Methods of compression of digital holograms. Physics Procedia, 73, 328–332 (2015). https://doi.org/10.1016/j.phpro.2015.09.150
  27. Shortt A. E., Naughton T. J., Javidi B. A companding approach for nonuniform quantization of digital holograms of threedimensional objects. Optics Express, 14(12), 5129 (2006). https://doi.org/10.1364/oe.14.005129
  28. Santos M., Horta N., Guilherme J. A survey on nonlinear analog-to-digital converters. Integration, the VLSI Journal, 47(1), 12–22 (2014). https://doi.org/10.1016/j.vlsi.2013.06.001
  29. Smith B. Instantaneous companding of quantized signals. Bell System Technical Journal, 36(3), 653–709 (1957). https://doi.org/10.1002/j.1538-7305.1957.tb03858.x
  30. Verrier N., Atlan M. Off-axis digital hologram reconstruction: Some practical considerations. Applied Optics, 50(34) (2011). https://doi.org/10.1364/AO.50.00H136
  31. Akhter N., Min G., Kim J, Lee B. A comparative study of reconstruction algorithms in digital holography. Optik, 124(17), 2955–2958 (2013). https://doi.org/10.1016/j.ijleo.2012.09.002

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».