Solution of metrological water-ecological problems using fuzzy logic methods
- Authors: Rozenta O.M.1, Fedotov V.K.2
-
Affiliations:
- Water Problems Institute of the Russian Academy of Sciences
- I.N. Ulyanov Chuvash State University
- Issue: Vol 74, No 2 (2025)
- Pages: 55-63
- Section: MEASUREMENTS IN INFORMATION TECHNOLOGIES
- URL: https://journals.rcsi.science/0368-1025/article/view/351170
- ID: 351170
Cite item
Abstract
In order to reduce the number of erroneous water management decisions, it is necessary to have sufficiently strict metrological support for studies of the composition and properties of natural waters. The use of standard methods requires expanding the scope of hydromonitoring and increasing the accuracy of the data obtained in order to ensure their representativeness, including the ability to refl ect general trends and transfer the results of the study to a wider range of objects. As a possible alternative to standard methods, it is proposed to analyze the accumulated measurement information using fuzzy logic. A methodology for applying the methods and mathematical apparatus of fuzzy (multi-valued) logic to solve metrological water-ecological problems has been developed and tested using the example of water quality assessment. Using fuzzy logic methods, the infl uence of four cause factors “Leaching”, “Weathering and sedimentation”, “Anthropogenic discharges”, “Self-purification” on the effect factor “Decrease in water quality against background” in the fi ve-level Harrington scale adopted in expert statistical assessment was studied. Using the software package of fuzzy logic MatLab Fuzzy Logic, forecasts of changes in water quality depending on four factors were obtained. The method of assessing the quality of natural water was tested on a specific example of setting up a fuzzy system for assessing water quality.It was found that the risks of errors still exist, but they were significantly reduced by taking into account poorly formalized linguistic information from expert hydrologists. The possibility of using the method for an a priori assessment of the probable consequences of changes in factors infl uencing the decline in water quality and taking preventive measures to optimize the operation of the water use system was shown.
About the authors
O. M. Rozenta
Water Problems Institute of the Russian Academy of Sciences
Email: omro3@yandex.ru
ORCID iD: 0000-0001-6261-6060
V. Kh. Fedotov
I.N. Ulyanov Chuvash State University
Email: fvh@inbox.ru
ORCID iD: 0000-0001-8395-6849
References
Белоусов Р. А., Назарова А. А., Розенталь О. М. Оценка качества гидрохимической информации с учетом метрологических требований. Аналитика, 13(3), 220–225 (2023). https://doi.org/10.22184/2227-572X.2023.13.3.220.225 Рыжова Е. В., Мухутдинов А. А., Рыжов В. В. Обеспечение качества измерений при оценке качества воды. Часть 2. Природные и сточные воды. Вестник Казанского технологического университета, (1), 389–398 (2003). https://elibrary.ru/huyjnl Кузин А. Ю., Крошкин А. Н., Исаев Л. К., Булыгин Ф. В., Войтко В. Д. Практические аспекты применения искусственного интеллекта в метрологии. Измерительная техника, (9), 66–72 (2023). https://doi.org/10.32446/0368-1025it.2023-9-66-72 Семенов К. К., Солопченко Г. Н. Теоретические предпосылки реализации метрологического автосопровождения программ обработки результатов измерений. Измерительная техника, (6), 9–14 (2010). Медведевских С. В., Аронов П. М., Кремлева О. Н. О возможности применения методов нечёткой логики (FUZZY LOGIC) при разработке и характеризации стандартных образцов качественных свойств. Тезисы докладов VI Международной научной конференции «Стандартные образцы в измерениях и технологиях», Екатеринбург, 3–6 сентября 2024 г., с. 113–114 (2024). Леоненков А. В. Нечёткое моделирование в среде MATLAB и fuzzyTECH. БХВ-Петербург, Санкт-Петербург (2003). Штовба С. Д. Проектирование нечётких систем средствами MATLAB. Горячая линия – Телеком, Москва (2007). Sahoo B., Lohani A. K., Sahu R. K. Fuzzy multiobjective and linear programming based management models for optimal land-water-crop system planning. Water Resources Management, 20(6), 931–948 (2006). https://doi.org/10.1007/s11269-005-9015-x Sharma A., Udeshi N., Varadan V. Use of fuzzy logic in determining quality of water. International Journal Scientific & Engineering Research, 5(9), 252–259 (2014). Vadiati M., Asghari-Moghaddam M., Nakhaei J., Adamowski A., Akbarzadeh H. A fuzzy-logic based decision-making approach for identification of groundwater quality based on groundwater quality indices. Journal of Environmental Management, 184(2), 255–270 (2016). https://doi.org/10.1016/j.jenvman.2016.09.082 Gharibi H., Hossein M. A., Nabizadeh R., Arabalibeik H., Yunesian M., Hossein S. M. A novel approach in water quality assessment based on fuzzy logic. Journal of Environmental Management, 112(15), 87–95 (2012). https://doi.org/10.1016/j.jenvman.2012.07.007 Шилоносов А. В. Интеллектуальная измерительная система на основе нейросетевых технологий и нечеткой логики. Вестник Тамбовского государственного технического университета, 28(2), 193–204 (2022). https://doi.org/10.17277/vestnik.2022.02.pp.193-204 Рыжaков В. В., Рыжaков М. В., Рыжaков К. В Оценивaние нечеткой информaции нa оcнове уcловных шкaл. Метрология, (8), 3–11 (2009). https://elibrary.ru/mziyff Shruti K., Paresh C.D. A basic review of fuzzy logic applications in hydrology and water resources. Applied Water Science, 10(8), 191–205 (2020). https://doi.org/10.1007/s13201-020-01276-2 Никаноров А. М. Научные основы мониторинга качества вод. Гидрометеоиздат, Санкт-Петербург (2005). Данилов-Данильян В. И., Розенталь О. М. Количественная оценка качества природной воды: экспертно-статистический анализ. Доклады Российской академии наук. Науки о Земле, 502(1-2), 68–72 (2022). https://doi.org/10.31857/S2686739722020049 Розенталь О. М., Федотов В. Х. Методы нечёткой логики на службе водно-экологических исследований. Экология промышленного производства, (3), 61–67 (2023). https://elibrary.ru/pbhqkc Rosenthal O. M., Fedotov V. Kh. A neuro fuzzy method for hydrochemical data processing in river fl ow analysis. Journal of Analytical Chemistry, 79(11), 1658–1666 (2024). https://doi.org/10.1134/S1061934824701090
Supplementary files
