Conformity assessment of measuring equipment within the process of calibration on the example of geometrical product specification measuring instruments

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Conformity assessment of measuring equipment, which can also be called verification, can be provided within the process of calibration in accredited calibration laboratories in accordance with the requirements of ISO/IEC 17025:2017 “General requirements for the competence of testing and calibration laboratories” on customer's request. However, the task execution in practice is often associated with significant difficulties due to the lack of laboratory personal's knowledge in the fi eld of probability theory and theoretical metrology, as well as the absence of clear and unambiguous rules for the task execution methods. The paper describes and analyzes the process of performing conformity assessment, which can be applied to any type of measuring equipment, and considers its particular elements, such as equipment requirements, decision rule, risk of a false decision and measurement uncertainty. The rules for performing conformity assessment for geometrical product specifications standardized in international standards ISO 14253 series are analyzed here. By using the example of calibration of a geometrical product specifications measuring instrument, such as a caliper, the article presents three scenarios of conformity assessment, based on different decision rules and different evaluation methods of measurement uncertainty. The statements of conformity acquired from the different scenarios of the caliper conformity assessment were inconsistent; they were analyzed and the above-mentioned scenarios were assessed for their validity in practice. The research results can be used for the development of conformity assessment procedures in accredited calibration laboratories performing the measurements of geometrical product specifications as well as the other types of measurement; they will also contribute to improving the qualification level of specialists involved in the conformity assessment and verification activities of various objects.

About the authors

N. Yu. Efremova

Belarusian State Institute of Metrology

Email: efremova@belgim.by

References

  1. Pendrill Leslie R. Using measurement uncertainty in decision-making and conformity assessment. Metrologia, 51(4), 206–218 (2014). https://doi.org/10.1088/0026-1394/51/4/S206
  2. Pendrill Leslie R. Optimised measurement uncertainty and decision-making in conformity assessment. NCSLI Measure. The Journal of Measurement Science, 2(2), 76–86 (2007). https://doi.org/10.1080/19315775.2007.11721376
  3. Beckert S. F., Paim W. S. Critical analysis of the acceptance criteria used in measurement systems evaluation. International Journal of Metrology and Quality Engineering, 8, 23 (2017). https://doi.org/10.1051/ijmqe/2017016
  4. Chrysler Group LLC, Ford Motor Company, General Motors Corporation. Measurement systems analysis – reference manual, 4th ed. AIAG, Michigan (2010).
  5. Verband der Automobilindustrie, VDA 5: Prüfprozesseignung, 2nd ed. VDA, Berlin (2011). (In German)
  6. Beckert S. F., Flôres R. E. Calibration and measurement capability (CMC) and customer technical qualification. 19th International Congress of Metrology, 04001 (2019). https://doi.org/10.1051/metrology/201904001
  7. Ефремова Н. Ю. Классификация способов оценки соответствия, осуществляемой при калибровке средств измерений. Материалы международной научно-технической конференции «Метрология 2024», Минск, Республика Беларусь, 9–10 апреля 2024.
  8. Ефремова Н. Ю., Толочко Т. К. Оценка соответствия при калибровке средств измерений для геометрических измерений. Материалы международной научно-технической конференции «Метрология 2022», Минск, Республика Беларусь, 5–6 апреля 2022.
  9. Pou J.-M., Leblond L. Control of customer and supplier risks by the guardband method. International Journal of Metrology and Quality Engineering, 6(2), 205 (2015). https://doi.org/10.1051/ijmqe/2015012
  10. Ефремова Н. Ю. Применение концепции неопределённости измерений в прикладных задачах метрологии. Измерительная техника, (4), 13–18 (2018). https://www.elibrary.ru/unzidk
  11. Guide to the Expression of Uncertainty in Measurement, 1st ed. ISO, Switzerland (1993).
  12. Ефремова Н. Ю., Чуновкина А. Г. Развитие концепции «неопределенности измерения» и пересмотр «Руководства по выражению неопределенности измерения». Часть 1. Причины и теоретико-вероятностные основы пересмотра. Измерительная техника, (4), 9–14 (2017).
  13. Kuselman I., Pennecchi F. R., Ricardo J. N. B. da Silva et al. IUPAC/CITAC Guide: Evaluation of risks of false decisions in conformity assessment of a multicomponent material or object due to measurement uncertainty (IUPAC Technical Report). Pure and Applied Chemistry, 93(1), 113–154 (2021). https://doi.org/10.1515/pac-2019-0906
  14. Rossi G. B., Crenna F. A probabilistic approach to measurement-based decisions. Measurement 39(2), 101–119 (2006). https://doi.org/10.1016/j.measurement.2005.10.011
  15. Allard A., Fischer N., Smith I. M. et al. Risk calculations for conformity assessment in practice. 19th International Congress of Metrology, 16001 (2019). https://doi.org/10.1051/metrology/201916001
  16. Schulz W., Sommer K.-D. Uncertainty of Measurement and Error Limits in Legal Metrology. OIML Bulletin, XL(4), 5–15 (1999).
  17. Sommer K.-D., Kochsiek, M. Role of measurement uncertainty in deciding conformance in legal metrology. OIML Bulletin, XLIII(2), 19–24 (2002).
  18. Morinaka H. Uncertainty in type approval and verification. OIML Bulletin, XLVII(1), 5–11 (2006).
  19. Källgren H., Lauwaars M., Magnusson B. et al. Role of measurement uncertainty in conformity assessment in legal metrology and trade. Accreditation and Quality Assurance, 8, 541–547 (2003). https://doi.org/10.1007/s00769-003-0707-8
  20. Purata-Sifuentes O.-J., Purata-Funes E.-A., Foyer G. Overestimation of conformity assessment risks in legal requirements of weighing instruments. ACTA IMEKO, 12(3), 1–7 (2023). https://doi.org/10.21014/actaimeko.v12i3.1471

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).