Correlations for the constants values of the Standard Model for electromagnetic, strong and weak interactions of fundamental particles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It is carried out the comparative analysis of some theoretical and phenomenological relations among constants of the extended Standard Model for electromagnetic, strong and weak interactions of fundamental particles (further the extended Standard Model) in order to find possible correlations for constants in the quark and lepton sectors. Availability of such correlations may attest to some connections for constants in the framework of a theory more general than the extended Standard Model. A number of theoretical relations among constants are considered and an accuracy of fulfi llment of these relations obtained in the main approximation of the extended Standard Model is evaluated. Then phenomenological relations between masses of current and constituent quarks and their mixing angles are considered. A typical estimation of accuracy of these theoretical and phenomenological relations is obtained. A phenomenological relation for constituent quark masses and a mixing angle for quarks is suggested. The quark-lepton complementarity relation for quark and neutrino mixing angles is verifi ed. Functional dependences for coupling constants of electromagnetic, strong and weak interactions on the square of a four-dimensional vector of energy and momentum are represented. An example of a grand unifi cation theory is demonstrated together with possible levels of spontaneous violation of its gauge symmetry to the gauge symmetry of the extended Standard Model.It is pointed out that additional Higgs particles are appeared at these levels of spontaneous violation. The quark-lepton complementarity relation verifi ed in the article for quark and neutrino mixing angles can be a consequence of a fundamental link between Cabibbo-Kobayashi-Maskava and Pontecorvo-Maki-Nakagava-Sakata matrices in a future grand unifi cation theory. In this case the received result will promote finding of such theory.

About the authors

V. V. Khruschov

Research Center for Applied Metrology – Rostest

ORCID iD: 0000-0002-1287-5846

References

  1. Bureau International des Poids et Measures. Reso lution 1 of the 26th CGPM (2018). On the revision of the International System of Units (SI). https://www.bipm.org/en/committees/cg/cgpm/26-2018/resolution-1
  2. Mills I. M., Mohr P. J., Quinn T. J. et al. Redefinition of the kilogram, ampere, kelvin and mole: a proposed approach to implementing CIPM recommendation 1 (CI-2005). Metrologia, 43(3), 227–246 (2006). https://doi.org/10.1088/0026-1394/43/3/006
  3. Кононогов С. А. Метрология и фундаментальные физические константы. Стандартинформ, Москва (2008). https://www.elibrary.ru/qjubtt
  4. Бронников К. А., Иващук В. Д., Хрущев В. В. Фундаментальные физические константы: результаты поиска и описания вариаций. Измерительная техника, (3), 3–8 (2022). https://doi.org/10.32446/0368-1025it.2022-3-3-8; https://elibrary.ru/mxmegc
  5. Бронников К. А., Калинин М. И., Хрущев В. В. О тепловой истории ранней Вселенной. Законодательная и прикладная метрология, (1(187)), 11–17 (2024). https://elibrary.ru/wkmwmw
  6. Burdman G. Quantum fi eld theory and the electroweak Standard Model. High Energy Physics – Phenomenology, (12 Oct 2024). https://doi.org/10.48550/arXiv.2410.09611
  7. Navas S., Amsler C., Gutsche T. et al. Review of Particle Physics. Physical Review D, 110(3), 030001 (2024). https://doi.org/10.1103/PhysRevD.110.030001; https://elibrary.ru/iustzn
  8. Томилин К. А. Фундаментальные физические постоянные в историческом и метрологическом аспектах. Физматлит, Москва (2006). https://www.elibrary.ru/rxgtop
  9. Хрущев В. В., Фомичев С. В., Титов О. А. Осцилляционные характеристики активных и стерильных нейтрино и нейтринные аномалии на малых расстояниях. Ядерная физика, 79(5), 483–496 (2016). https://doi.org/10.1134/S1063778816050124; https://elibrary.ru/wlnoil
  10. Юдин А. В., Надёжин Д. К., Хрущев В. В., Фомичев С. В. Потоки нейтрино от коллапсирующей Сверхновой в модели с тремя стерильными нейтрино. Письма в астрономический журнал, 42(12), 881–896 (2016). https://doi.org/10.7868/S032001081612007X; https://www.elibrary.ru/wylxkt
  11. Khruschov V. V. Some scales in neutrino physics. High Energy Physics – Phenomenology, (27 Dec 2024 (v2)). https://doi.org/10.48550/arXiv.1106.5580
  12. Sen M., Smirnov A. Y. Neutrinos with refractive masses and the DESI BAO results. High Energy Physics – Phenomenology, (2 Jul 2024). https://doi.org/10.48550/arXiv.2407.02462
  13. Fritzsch H. Calculating The Cabibbo angle. Physics Letters B, 70(4), 436–440 (1977). https://doi.org/10.1016/0370-2693(77)90408-7
  14. Гапонов Ю. В., Хрущев В. В., Семенов С. В. Феноменологические соотношения для углов смешиваний кварков и нейтрино. Ядерная физика, 71(1), 163–171 (2008). https://www.elibrary.ru/ibwxxr
  15. Pati J. C., Salam A. Lepton number as the fourth “color”. Physical Review D, 10(1), 275–289 (1974). https://doi.org/10.1103/PhysRevD.10.275
  16. Serebrov A. P., Zherebtsov O. M., Fomin A. K. et al. Analysis of experimental data on neutron decay for the possibility of the existence of the right vector boson WR. High Energy Physics – Phenomenology, (5 Jun 2024 (v1)). https://doi.org/10.48550/arXiv.2406.03440
  17. Solera S. F., Pich A., Silva L.V. Model independent bounds on left-right boson masses from LHC run 2 and fl avor observables. High Energy Physics – Phenomenology, (27 Sep 2024). https://doi.org/10.48550/arXiv.2409.18552
  18. Altarelli G., Meloni D. A non supersymmetric SO(10) grand unifi ed model for all the physics below MGUT. Journal of High Energy Physics, 2013, 21 (2013). https://doi.org/10.1007/JHEP08(2013)021
  19. Dueck A., Rodejohann W. Fits to SO(10) grand unifi ed model. Journal of High Energy Physics, 2013, 24 (2013). https://doi.org/10.1007/JHEP09(2013)024

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).