Characteristics of temporal dynamics of liquid crystal spatial modulators as a limitation of the performance of tunable diffractive neural networks

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Liquid crystal spatial light modulators are used in a wide range of modern problems in science and technology. These modulators are used to control the amplitude, phase, and direction of propagation of coherent optical radiation in optical information processing systems. However, the influence of the characteristics of the temporal dynamics of liquid crystal spatial light modulators on the performance of information optical systems, including diffractive neural networks, has not been sufficiently studied. The article presents the results of a study of the temporal dynamics of phase modulation of the liquid crystal spatial light modulator SLM-200 (Santec, Japan). Computer-synthesized binary phase diffractive optical elements were used in the experiments, and the characteristics of the temporal dynamics of the optical modulator were measured: 125 ms is the rise time of the diffraction efficiency when displaying diffractive optical elements on the screen; 61.9 ms is the decay time when switching frames. With these characteristics, it is possible to ensure the formation of a variable optical field at a frame display frequency of 2 Hz with an interference level of –17.1 dB. Increasing the frame display frequency leads to the appearance of unavoidable interframe interference, which in turn limits the effective performance of the information system. The results obtained can be useful in designing high-performance optical information processing systems and diffraction neural networks

About the authors

A. A. Volkov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: mr.a.a.volkov@gmail.com
ORCID iD: 0009-0008-4213-9373

T. Z. Minikhanov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: minikhanovtz@yandex.ru
ORCID iD: 0000-0002-2246-9729

E. Yu. Zlokazov

E. Yu. Zlokazov

Email: ezlokazov@gmail.com
ORCID iD: 0000-0003-1340-7734

A. V. Shifrina

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: avshifrina@gmail.com
ORCID iD: 0000-0001-7816-5989

E. K. Petrova

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: EKPetrova@mephi.ru
ORCID iD: 0000-0002-6764-7664

R. S. Starikov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: rstarikov@mail.ru
ORCID iD: 0000-0002-7369-1565

References

  1. LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791
  2. Malik P., Pathania M., Rathaur V. K. et al. Overview of artificial intelligence in medicine. Medknow, 8, 2328–2331 (2019). https://doi.org/10.4103/jfmpc.jfmpc_440_19
  3. Jiang C., Zhang H., Ren Y. et al. Machine learning paradigms for next-generation wireless networks. IEEE Wireless Communications, 24(2), 98–105 (2017). https://doi.org/10.1109/MWC.2016.1500356WC
  4. Wei H., Laszewski M., Kehtarnavaz N. Deep learning-based person detection and classification for far field video surveillance. 2018 IEEE 13th Dallas Circuits and Systems Conference (DCAS), 1–4 (2018). https://doi.org/10.1109/DCAS.2018.8620111
  5. Collobert R., Weston J. A unified architecture for natural language processing: Deep neural networks with multitask learning. Proceedings of the 25th international conference on Machine learning, 160–167 (2008). https://doi.org/10.1145/1390156.1390177
  6. Rymov D., Svistunov A., Starikov R. et al. 3D-CGH-Net: customizable 3D-hologram generation via deep learning. Optics and Lasers in Engineering, 184, 108645 (2025). https://doi.org/10.1016/j.optlaseng.2024.108645
  7. Kim N. S., Austin T., Baauw D. et al. Leakage current: Moore’s law meets static power. Computer, 36(12), 68–75 (2003). https://doi.org/10.1109/MC.2003.1250885
  8. Dennard R. H., Gaensslen F. H., Yu H.-N. et al. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE Journal of solid-state circuits, 9(5), 256–268 (1974). https://doi.org/10.1109/N-SSC.2007.4785543
  9. Hamerly R., Bernstein L., Sludds A. et al. Large-scale optical neural networks based on photoelectric multiplication. Physical Review X, 9(2), 021032 (2019). https://doi.org/10.1103/PhysRevX.9.021032
  10. Mengu D., Luo Y., Rivenson Y., Ozcan A. Analysis of diffractive optical neural networks and their integration with electronic neural networks. IEEE Journal of Selected Topics in Quantum Electronics, 26(1), 1–14 (2019). https://doi.org/10.1109/JSTQE.2019.2921376
  11. Xu R., Lu P., Xu F., Shi Y. A survey of approaches for implementing optical neural networks. Optics & Laser Technology, 136, 106787 (2021). https://doi.org/10.1016/j.optlastec.2020.106787
  12. Миниханов Т., Злоказов Е., Стариков Р., Черёмхин П. Временная динамика модуляции фазы жидкокристаллического пространственно-временного модулятора света. Измерительная техника, 73(12), 35–39 (2024). https://doi.org/10.32446/0368-1025it.2023-12-35-39
  13. Goodman J. W., Dias A., Woody L. Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms. Optics Letters, 2(1), 1–3 (1978). https://doi.org/10.1364/OL.2.000001
  14. Dong J., Gigan S., Krzakala F., Wainrib G. Scaling up echo-state networks with multiple light scattering. 2018 IEEE Statistical Signal Processing Workshop (SSP), 448–452 (2018). https://doi.org/10.1109/SSP.2018.8450698
  15. Feldmann J., Youngblood N., Wright C.D., Bhaskaran H., Pernice W.H. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 569(7755), 208–214 (2019). https://doi.org/10.1038/s41586-019-1157-8
  16. Shen Y., Harris N. C., Skirlo S. et al. Deep learning with coherent nanophotonic circuits. Nature photonics, 11(7), 441– 446 (2017). https://doi.org/10.1038/nphoton.2017.93
  17. Lin X., Rivenson Y., Yardimci N. T. et al. All-optical machine learning using diffractive deep neural networks. Science, 361(6406), 1004–1008 (2018). https://doi.org/10.1126/science.aat8084
  18. Chen H., Feng J., Jiang M. et al. Diffractive deep neural networks at visible wavelengths. Engineering, 7(10), 1483–1491 (2021). https://doi.org/10.1016/j.eng.2020.07.032
  19. Zhou T., Lin X., Wu J. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nature Photonics, 15(5), 367–373 (2021). https://doi.org/10.1038/s41566-021-00796-w
  20. Bernstein L., Sludds A., Panuski C. et al. Single-shot optical neural network. Science Advances, 9(25), 7904 (2023). https://doi.org/10.1126/sciadv.adg7904
  21. Deng Z., Qing D.-K., Hemmer P. R., Zubairy M. S. Implementation of optical associative memory by a computer-generated hologram with a novel thresholding scheme. Optics letters, 30(15), 1944–1946 (2005). https://doi.org/10.1364/ol.30.001944
  22. Zuo Y., Li B., Zhao Y. et al. All-optical neural network with nonlinear activation functions. Optica, 6(9), 1132–1137 (2019). https://doi.org/10.1364/OPTICA.6.001132
  23. Евтихиев Н. Н., Краснов В. В., Рябцев И. П. и др. Измерение модуляции фазового жидкокристаллического модулятора света Santec SLM-200 и анализ его применимости для реконструкции изображений с дифракционных элементов. Измерительная техника, (5), 4–8 (2021). https://doi.org/10.32446/0368-1025it.2021-5-4-8
  24. Yang G.-z., Dong B.-z., Gu B.-y., Zhuang J.-y., Ersoy O. K. Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison. Applied optics, 33(2), 209–218 (1994). https://doi.org/10.1364/AO.33.000209
  25. Ovchinnikov A., Krasnov V., Cheremkhin P. et al. What binarization method is the best for amplitude inline Fresnel holograms synthesized for divergent beams using the direct search with random trajectory technique? Journal of Imaging, 9(2), 28 (2023). https://doi.org/10.3390/jimaging9020028
  26. Миниханов Т., Злоказов Е., Краснов В., Деревеницкая Д. Исследование динамических характеристик фазовых ЖК ПВМС HoloEye Pluto-2 VIS-016 и HoloEye GAEA-2 VIS-036. Сборник научных трудов XXXII Международной школы-симпозиума по голографии, когерентной оптике и фотонике, Санкт-Петербург, с. 195–197 (2022).

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).