Характеристики временно́й динамики жидкокристаллических пространственно-временны́х модуляторов как ограничение быстродействия перестраиваемых дифракционных нейросетей.

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Жидкокристаллические пространственно-временны́е модуляторы света используются при решении широкого спектра современных задач науки и техники. С помощью данных модуляторов можно управлять амплитудой, фазой и направлением распространения когерентного оптического излучения в оптических системах обработки информации. Однако недостаточно изучено влияние характеристик временно́й динамики жидкокристаллических пространственно-временны́х модуляторов на эксплуатационные характеристики информационных оптических систем, в том числе дифракционных нейронных сетей. Представлены результаты исследования временно́й динамики модуляции фазы жидкокристаллического пространственно-временного модулятора света SLM-200 (Santec, Япония). В ходе экспериментов использованы компьютерно-синтезированные бинарные фазовые дифракционные оптические элементы, измерены характеристики временно́й динамики оптического модулятора: 125 мс – время нарастания дифракционной эффективности при выводе дифракционных оптических элементов на экран; 61,9 мс – время спада при переключении кадров. При данных характеристиках может быть обеспечено формирование переменного оптического поля на частоте отображения кадров 2 Гц с уровнем помехи –17,1 дБ. Увеличение частоты отображения кадров приводит к появлению неустранимых межкадровых помех, что ограничивает эффективное быстродействие информационной системы. Полученные результаты будут полезны при проектировании высокопроизводительных систем оптической обработки информации, дифракционных нейронных сетей

Об авторах

А. А. Волков

Национальный исследовательский ядерный университет «МИФИ»

Email: mr.a.a.volkov@gmail.com
ORCID iD: 0009-0008-4213-9373

Т. З. Миниханов

Национальный исследовательский ядерный университет «МИФИ»

Email: minikhanovtz@yandex.ru
ORCID iD: 0000-0002-2246-9729

Е. Ю. Злоказов

Национальный исследовательский ядерный университет «МИФИ»

Email: ezlokazov@gmail.com
ORCID iD: 0000-0003-1340-7734

А. В. Шифрина

Национальный исследовательский ядерный университет «МИФИ»

Email: avshifrina@gmail.com
ORCID iD: 0000-0001-7816-5989

Е. К. Петрова

Национальный исследовательский ядерный университет «МИФИ»

Email: EKPetrova@mephi.ru
ORCID iD: 0000-0002-6764-7664

Р. С. Стариков

Национальный исследовательский ядерный университет «МИФИ»

Email: rstarikov@mail.ru
ORCID iD: 0000-0002-7369-1565

Список литературы

  1. LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791
  2. Malik P., Pathania M., Rathaur V. K. et al. Overview of artificial intelligence in medicine. Medknow, 8, 2328–2331 (2019). https://doi.org/10.4103/jfmpc.jfmpc_440_19
  3. Jiang C., Zhang H., Ren Y. et al. Machine learning paradigms for next-generation wireless networks. IEEE Wireless Communications, 24(2), 98–105 (2017). https://doi.org/10.1109/MWC.2016.1500356WC
  4. Wei H., Laszewski M., Kehtarnavaz N. Deep learning-based person detection and classification for far field video surveillance. 2018 IEEE 13th Dallas Circuits and Systems Conference (DCAS), 1–4 (2018). https://doi.org/10.1109/DCAS.2018.8620111
  5. Collobert R., Weston J. A unified architecture for natural language processing: Deep neural networks with multitask learning. Proceedings of the 25th international conference on Machine learning, 160–167 (2008). https://doi.org/10.1145/1390156.1390177
  6. Rymov D., Svistunov A., Starikov R. et al. 3D-CGH-Net: customizable 3D-hologram generation via deep learning. Optics and Lasers in Engineering, 184, 108645 (2025). https://doi.org/10.1016/j.optlaseng.2024.108645
  7. Kim N. S., Austin T., Baauw D. et al. Leakage current: Moore’s law meets static power. Computer, 36(12), 68–75 (2003). https://doi.org/10.1109/MC.2003.1250885
  8. Dennard R. H., Gaensslen F. H., Yu H.-N. et al. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE Journal of solid-state circuits, 9(5), 256–268 (1974). https://doi.org/10.1109/N-SSC.2007.4785543
  9. Hamerly R., Bernstein L., Sludds A. et al. Large-scale optical neural networks based on photoelectric multiplication. Physical Review X, 9(2), 021032 (2019). https://doi.org/10.1103/PhysRevX.9.021032
  10. Mengu D., Luo Y., Rivenson Y., Ozcan A. Analysis of diffractive optical neural networks and their integration with electronic neural networks. IEEE Journal of Selected Topics in Quantum Electronics, 26(1), 1–14 (2019). https://doi.org/10.1109/JSTQE.2019.2921376
  11. Xu R., Lu P., Xu F., Shi Y. A survey of approaches for implementing optical neural networks. Optics & Laser Technology, 136, 106787 (2021). https://doi.org/10.1016/j.optlastec.2020.106787
  12. Миниханов Т., Злоказов Е., Стариков Р., Черёмхин П. Временная динамика модуляции фазы жидкокристаллического пространственно-временного модулятора света. Измерительная техника, 73(12), 35–39 (2024). https://doi.org/10.32446/0368-1025it.2023-12-35-39
  13. Goodman J. W., Dias A., Woody L. Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms. Optics Letters, 2(1), 1–3 (1978). https://doi.org/10.1364/OL.2.000001
  14. Dong J., Gigan S., Krzakala F., Wainrib G. Scaling up echo-state networks with multiple light scattering. 2018 IEEE Statistical Signal Processing Workshop (SSP), 448–452 (2018). https://doi.org/10.1109/SSP.2018.8450698
  15. Feldmann J., Youngblood N., Wright C.D., Bhaskaran H., Pernice W.H. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 569(7755), 208–214 (2019). https://doi.org/10.1038/s41586-019-1157-8
  16. Shen Y., Harris N. C., Skirlo S. et al. Deep learning with coherent nanophotonic circuits. Nature photonics, 11(7), 441– 446 (2017). https://doi.org/10.1038/nphoton.2017.93
  17. Lin X., Rivenson Y., Yardimci N. T. et al. All-optical machine learning using diffractive deep neural networks. Science, 361(6406), 1004–1008 (2018). https://doi.org/10.1126/science.aat8084
  18. Chen H., Feng J., Jiang M. et al. Diffractive deep neural networks at visible wavelengths. Engineering, 7(10), 1483–1491 (2021). https://doi.org/10.1016/j.eng.2020.07.032
  19. Zhou T., Lin X., Wu J. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nature Photonics, 15(5), 367–373 (2021). https://doi.org/10.1038/s41566-021-00796-w
  20. Bernstein L., Sludds A., Panuski C. et al. Single-shot optical neural network. Science Advances, 9(25), 7904 (2023). https://doi.org/10.1126/sciadv.adg7904
  21. Deng Z., Qing D.-K., Hemmer P. R., Zubairy M. S. Implementation of optical associative memory by a computer-generated hologram with a novel thresholding scheme. Optics letters, 30(15), 1944–1946 (2005). https://doi.org/10.1364/ol.30.001944
  22. Zuo Y., Li B., Zhao Y. et al. All-optical neural network with nonlinear activation functions. Optica, 6(9), 1132–1137 (2019). https://doi.org/10.1364/OPTICA.6.001132
  23. Евтихиев Н. Н., Краснов В. В., Рябцев И. П. и др. Измерение модуляции фазового жидкокристаллического модулятора света Santec SLM-200 и анализ его применимости для реконструкции изображений с дифракционных элементов. Измерительная техника, (5), 4–8 (2021). https://doi.org/10.32446/0368-1025it.2021-5-4-8
  24. Yang G.-z., Dong B.-z., Gu B.-y., Zhuang J.-y., Ersoy O. K. Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison. Applied optics, 33(2), 209–218 (1994). https://doi.org/10.1364/AO.33.000209
  25. Ovchinnikov A., Krasnov V., Cheremkhin P. et al. What binarization method is the best for amplitude inline Fresnel holograms synthesized for divergent beams using the direct search with random trajectory technique? Journal of Imaging, 9(2), 28 (2023). https://doi.org/10.3390/jimaging9020028
  26. Миниханов Т., Злоказов Е., Краснов В., Деревеницкая Д. Исследование динамических характеристик фазовых ЖК ПВМС HoloEye Pluto-2 VIS-016 и HoloEye GAEA-2 VIS-036. Сборник научных трудов XXXII Международной школы-симпозиума по голографии, когерентной оптике и фотонике, Санкт-Петербург, с. 195–197 (2022).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».