Development of the reference material of the multicomponent solution of elements ICP-RM Multi 2 for inductively coupled plasma methods.

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For the metrological assurance of inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectrometry, the process of establishing the calibration dependence of the output signal is of great importance. In this article, the authors present the results of work on the development of a reference material of the composition of a multicomponent solution of elements: barium, cadmium, cobalt, copper, iron, lead, lithium, manganese, nickel and zinc (ICP-RM Multi 2). The reference material is a solution of metals or their compounds acidified with nitric acid and packaged in cans made high pressure polyethylene complete with a hermetically sealed screw cap for long-term storage, with additional packaging of the lid in paraffin tape and vacuum packaging to reduce evaporation of the material through a threaded connection. This article presents the results of determining the metrological characteristics of reference material: long-term stability, homogeneity and uncertainty of characterization of the certified value based on the results of measurements on the State primary Standard of units of mass fraction and mass (molar) concentration of inorganic components in aqueous solutions based on gravimetric and spectral methods GET 217-2018. Тhe extended uncertainty of the certified value of the mass fraction and mass concentration of components in ICP-RM Multi 2 does not exceed 0.8 %, which corresponds to the category of working standards according to the state verification scheme of component content and will ensure metrological traceability of measurement results in inorganic analysis by mass spectrometry and optical emission spectrometry with inductively coupled plasma methods from the State primary standard GET 217-2018, and also to apply in routine analysis one of the main advantages of these methods is the ability to quickly and simultaneously measure several elements in samples.

Sobre autores

T. Stolboushkina

Russian Metrological Institute of Technical Physics and Radio Engineering

Email: stolboushkina@vniiftri.ru

A. Stakheev

Russian Metrological Institute of Technical Physics and Radio Engineering

Email: stakheev@vniiftri.ru

Bibliografia

  1. Стахеев А. А., Столбоушкина Т. П. Многоэлементный стандартный образец для методов с индуктивно связанной плазмой: разработка и испытания. Эталоны. Стандартные образцы, 17(2), 49–57 (2021). https://doi.org/10.20915/2687-0886-2021-17-2-49-57
  2. Столбоушкина Т. П., Стахеев А. А. Определение цинка, меди, кадмия и свинца в говяжьей печени. Аналитика, 14(2), 162–166 (2024). https://doi.org/10.22184/2227-572X.2024.14.2.162.166
  3. Wang J. Final report of the CCQM-K145: toxic and essential elements in bovine liver. Metrologia, 57(1A), 08013 (2020). https://doi.org/10.1088/0026-1394/57/1A/08013
  4. Yang L. Final report of the SIM.QM-S7 supplementary comparison, trace metals in drinking water. Metrologia, 55(1A), 08002 (2018). https://doi.org/10.1088/0026-1394/55/1A/08002
  5. Jackson S. L. Determination of Mn, Fe, Ni, Cu, Zn, Cd and Pb in seawater using offline extraction and triple quadrupole ICP-MS/MS. Journal of Analytical Atomic Spectrometry, 33(2) (2018). https://doi.org/10.1039/C7JA00237H
  6. Belkouteb N., Schroeder H., Arndt J. et al. Quantification of 68 elements in river water monitoring samples in single-run measurements. Chemosphere, 320, 138053 (2023). https://doi.org/10.1016/j.chemosphere.2023.138053
  7. Belkouteb N., Schroeder H., Wiederhold J. G. et al. Multi-element analysis of unfiltered samples in river water monitoring-digestion and single-run analyses of 67 elements. Analytical and bioanalytical chemistry, 416, 3205–3222 (2024). https://doi.org/10.1007/s00216-024-05270-4
  8. Ma L. D., Wang Q., Wei C. et al. Measurement of heavy metals and organo-tin in leather powder. Metrologia, 55(1A), 08020 (2018). https://doi.org/10.1088/0026-1394/55/1A/08020
  9. Legat J., Matczuk M., Timerbaev A., Jarosz M. CE separation and ICP-MS detection of gold nanoparticles and their protein conjugates. Chromatographia, 80(11), 1–6 (2017). https://doi.org/10.1007/s10337-017-3387-y
  10. Kruszewska J., Matczuk M., Skorupska S., et al. Characterization of quantum dots in cancer cytosol using ICP-MS-based combined techniques. Analytical Biochemistry, 584, 113387 (2019). https://doi.org/10.1016/j.ab.2019.113387
  11. Matczuk M., Ruzik L., Timerbaev A. R. Recent development of CE-ICP-MS in biospeciation research and analysis: From anticancer drugs to nanoparticles and beyond TrAC. Trends in Analytical Chemistry, 180, 117967 (2024). https://doi.org/10.1016/j.trac.2024.117967
  12. Wang X. Y., Zuo Y., Huang D. et al. Comparative study on inorganic composition and crystallographic properties of cortical and cancellous bone. Biomedical and Environmental Sciences, 23(6), 473–480 (2010). https://doi.org/10.1016/S0895-3988(11)60010-X
  13. Seltzer M. D., Lance V. A., Elsey R. M. Laser ablation ICP-MS analysis of the radial distribution of lead in the femur of Alligator mississippiensis. The Science of The Total Environment, 363(1-3), 245–252 (2006). https://doi.org/10.1016/j.scitotenv.2005.05.024
  14. Гусев Л. Ю., Стахеев А. А. О единстве измерений в области масс-спектрометрии. Альманах современной метрологии, (6), 49–52 (2016). https://elibrary.ru/wiqkkx
  15. Добровольский В. И., Стахеев А. А., Столбоушкина Т. П. Государственный первичный эталон единиц массовой доли и массовой (молярной) концентрации неорганических компонентов в водных растворах на основе гравиметрического и спектральных методов ГЭТ 217-2018. Измерительная техника, (11), 3–5 (2018). https://doi.org/10.32446/0368-1025it.2018-11-3-5
  16. Столбоушкина Т. П., Стахеев А. А. Чистота лабораторной посуды – залог достоверных и точных измерений. Альманах современной метрологии, (14), 201–205 (2018). https://elibrary.ru/kzdhxy

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).