Development of the reference material of the multicomponent solution of elements ICP-RM Multi 2 for inductively coupled plasma methods.
- Autores: Stolboushkina T.P.1, Stakheev A.A.1
-
Afiliações:
- Russian Metrological Institute of Technical Physics and Radio Engineering
- Edição: Volume 74, Nº 1 (2025)
- Páginas: 50-55
- Seção: ON THE 70TH ANNIVERSARY OF VNIIFTRI
- URL: https://journals.rcsi.science/0368-1025/article/view/327998
- ID: 327998
Citar
Resumo
For the metrological assurance of inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectrometry, the process of establishing the calibration dependence of the output signal is of great importance. In this article, the authors present the results of work on the development of a reference material of the composition of a multicomponent solution of elements: barium, cadmium, cobalt, copper, iron, lead, lithium, manganese, nickel and zinc (ICP-RM Multi 2). The reference material is a solution of metals or their compounds acidified with nitric acid and packaged in cans made high pressure polyethylene complete with a hermetically sealed screw cap for long-term storage, with additional packaging of the lid in paraffin tape and vacuum packaging to reduce evaporation of the material through a threaded connection. This article presents the results of determining the metrological characteristics of reference material: long-term stability, homogeneity and uncertainty of characterization of the certified value based on the results of measurements on the State primary Standard of units of mass fraction and mass (molar) concentration of inorganic components in aqueous solutions based on gravimetric and spectral methods GET 217-2018. Тhe extended uncertainty of the certified value of the mass fraction and mass concentration of components in ICP-RM Multi 2 does not exceed 0.8 %, which corresponds to the category of working standards according to the state verification scheme of component content and will ensure metrological traceability of measurement results in inorganic analysis by mass spectrometry and optical emission spectrometry with inductively coupled plasma methods from the State primary standard GET 217-2018, and also to apply in routine analysis one of the main advantages of these methods is the ability to quickly and simultaneously measure several elements in samples.
Sobre autores
T. Stolboushkina
Russian Metrological Institute of Technical Physics and Radio Engineering
Email: stolboushkina@vniiftri.ru
A. Stakheev
Russian Metrological Institute of Technical Physics and Radio Engineering
Email: stakheev@vniiftri.ru
Bibliografia
Стахеев А. А., Столбоушкина Т. П. Многоэлементный стандартный образец для методов с индуктивно связанной плазмой: разработка и испытания. Эталоны. Стандартные образцы, 17(2), 49–57 (2021). https://doi.org/10.20915/2687-0886-2021-17-2-49-57 Столбоушкина Т. П., Стахеев А. А. Определение цинка, меди, кадмия и свинца в говяжьей печени. Аналитика, 14(2), 162–166 (2024). https://doi.org/10.22184/2227-572X.2024.14.2.162.166 Wang J. Final report of the CCQM-K145: toxic and essential elements in bovine liver. Metrologia, 57(1A), 08013 (2020). https://doi.org/10.1088/0026-1394/57/1A/08013 Yang L. Final report of the SIM.QM-S7 supplementary comparison, trace metals in drinking water. Metrologia, 55(1A), 08002 (2018). https://doi.org/10.1088/0026-1394/55/1A/08002 Jackson S. L. Determination of Mn, Fe, Ni, Cu, Zn, Cd and Pb in seawater using offline extraction and triple quadrupole ICP-MS/MS. Journal of Analytical Atomic Spectrometry, 33(2) (2018). https://doi.org/10.1039/C7JA00237H Belkouteb N., Schroeder H., Arndt J. et al. Quantification of 68 elements in river water monitoring samples in single-run measurements. Chemosphere, 320, 138053 (2023). https://doi.org/10.1016/j.chemosphere.2023.138053 Belkouteb N., Schroeder H., Wiederhold J. G. et al. Multi-element analysis of unfiltered samples in river water monitoring-digestion and single-run analyses of 67 elements. Analytical and bioanalytical chemistry, 416, 3205–3222 (2024). https://doi.org/10.1007/s00216-024-05270-4 Ma L. D., Wang Q., Wei C. et al. Measurement of heavy metals and organo-tin in leather powder. Metrologia, 55(1A), 08020 (2018). https://doi.org/10.1088/0026-1394/55/1A/08020 Legat J., Matczuk M., Timerbaev A., Jarosz M. CE separation and ICP-MS detection of gold nanoparticles and their protein conjugates. Chromatographia, 80(11), 1–6 (2017). https://doi.org/10.1007/s10337-017-3387-y Kruszewska J., Matczuk M., Skorupska S., et al. Characterization of quantum dots in cancer cytosol using ICP-MS-based combined techniques. Analytical Biochemistry, 584, 113387 (2019). https://doi.org/10.1016/j.ab.2019.113387 Matczuk M., Ruzik L., Timerbaev A. R. Recent development of CE-ICP-MS in biospeciation research and analysis: From anticancer drugs to nanoparticles and beyond TrAC. Trends in Analytical Chemistry, 180, 117967 (2024). https://doi.org/10.1016/j.trac.2024.117967 Wang X. Y., Zuo Y., Huang D. et al. Comparative study on inorganic composition and crystallographic properties of cortical and cancellous bone. Biomedical and Environmental Sciences, 23(6), 473–480 (2010). https://doi.org/10.1016/S0895-3988(11)60010-X Seltzer M. D., Lance V. A., Elsey R. M. Laser ablation ICP-MS analysis of the radial distribution of lead in the femur of Alligator mississippiensis. The Science of The Total Environment, 363(1-3), 245–252 (2006). https://doi.org/10.1016/j.scitotenv.2005.05.024 Гусев Л. Ю., Стахеев А. А. О единстве измерений в области масс-спектрометрии. Альманах современной метрологии, (6), 49–52 (2016). https://elibrary.ru/wiqkkx Добровольский В. И., Стахеев А. А., Столбоушкина Т. П. Государственный первичный эталон единиц массовой доли и массовой (молярной) концентрации неорганических компонентов в водных растворах на основе гравиметрического и спектральных методов ГЭТ 217-2018. Измерительная техника, (11), 3–5 (2018). https://doi.org/10.32446/0368-1025it.2018-11-3-5 Столбоушкина Т. П., Стахеев А. А. Чистота лабораторной посуды – залог достоверных и точных измерений. Альманах современной метрологии, (14), 201–205 (2018). https://elibrary.ru/kzdhxy
Arquivos suplementares
