Measures of the number concentration of particles in liquids for the purpose of metrological traceability in the field of ultrahigh concentrations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Measurements of the granulometric composition of aerosols, suspensions and powdery materials in the field of ultrahigh concentrations are in demand in the chemical, gas, and oil industries, where concentrated suspensions of solid particles are used. The existing measuring instruments for particle number concentration in liquids are characterized by an upper limit of the reproduction range of particle number concentration of 1012 m−3. However, for metrological support of photometric high-precision measuring instruments for the number concentration of particles in a liquid, it is necessary to expand this range to 108‒1018 m−3. As part of the development of measures for calculating the concentration of particles in the liquid MSK-V, a technology for producing highly concentrated suspensions of monodisperse polystyrene latex spheres has been proposed. The high concentration of the suspension was achieved as a result of an increase in the amount of styrene in the seeded emulsion and, consequently, an increase in the amount of coagulate during synthesis. An algorithm for indirect measurements of the particle number concentration in aqueous suspensions of monodisperse polystyrene latex spheres is described. During the research, equipment from the State primary standard of units of dispersed parameters of aerosols, suspensions and powdery materials GET 163-2020 was used. The particle number concentrations and metrological characteristics of the created measures are determined. The levels of confidence of the error of indirect measurement of the number concentration of particles in water are calculated. It is established that the limits of the relative error of indirect measurements of the number concentration of particles in water are ±4 %. The developed measures of number concentrations of particles in a liquid (MSK-V) will partially cover the need of the domestic market for measures and standard samples for determining the size and number concentration of particles while ensuring the uniformity of measurements of the granulometric composition of aerosols, suspensions, and powdery materials.

About the authors

D. V. Averkin

Russian Metrological Institute of Technical Physics and Radio Engineering

Email: averkindmitry@gmail.com
ORCID iD: 0000-0002-8653-3267

V. I. Dobrovolskiy

Russian Metrological Institute of Technical Physics and Radio Engineering

Email: vid@vniiftri.ru

D. M. Balakhanov

Russian Metrological Institute of Technical Physics and Radio Engineering

Email: balakhanov@vniiftri.ru

M. A. Averkina

Russian Metrological Institute of Technical Physics and Radio Engineering

Email: averkina@vniiftri.ru

M V. Balakhanov

Russian Metrological Institute of Technical Physics and Radio Engineering

Email: balah@vniiftri.ru
ORCID iD: 0000-0003-4228-8607

References

  1. Балаханов М. В., Добровольский В. И., Балаханов Д. М., Беленький Д. И., Магомедов Т. М. Состояние метро логического обеспечения измерений дисперсных параметров аэрозолей, взвесей и порошкообразных материалов. Материалы III Международной научно-технической конференции «Метрология физико-химических измерений», 09–11 октября 2018 г., Менделеево, ФГУП «ВНИИФТРИ», с. 108–112 (2019). https://www.elibrary.ru/hgtfcc
  2. Садагов А. Ю. Диагностика коллоидных систем на основе совместного использования спектров абсорбции, флуоресценции, статического и динамического рассеяния света: автореф. дис. канд. техн. наук. ВНИИОФИ, Москва (2018). https://www.vniiofi.ru/images/DISS_SOVET/avtoreferat/Dissertatciia_Sadagov.pdf
  3. Грицкова И. А., Жаченков С. В., Прокопов Н. И., Ильменев П. Е. Эмульсионная полимеризация гидрофобных мономеров в высокодисперсных эмульсиях. Высокомолекулярные соединения. Серия А, 33(7), 1476–1483 (1991). https://www.elibrary.ru/xpoauo
  4. Прокопов Н. И., Грицкова И. А. Особенности гетерофазной полимеризации стирола при образовании поверхностно-активных веществ на границе раздела фаз. Успехи химии, (9), 890–900 (2001). https://doi.org/10.1070/rc2001v070n09abeh000669
  5. Аверкин Д. В., Кузнецов И. А., Балаханов Д. М. Разработка мер размеров частиц в жидкости с номинальным значением размеров частиц 0,07 мкм и 0,1 мкм. Альманах современной метрологии, (4(36)), 87–95 (2023). https://elibrary.ru/brezme
  6. Brouwer W. M. The preparation of small polystyrene latex particles. Journal of Applied Polymer Science, 38, 1335–1346 (1989). https://doi.org/10.1002/app.1989.070380712
  7. Ugelstad J.; El-Aasser M. S., Vanderhoff J. W. Emulsion polymerization: Initiation of polymerization in monomer droplets. Polymer Letters Edition, 11, 503–513 (1973). https://doi.org/10.1002/pol.1973.130110803
  8. Paulen R., Benyahia B., Latifi M. A., Fikar M. Dynamic optimization of semi-batch emulsion co-polymerization reactor for styrene/butyl acrylate in the presence of a chain transfer agent. Computer Aided Chemical Engineering, 32, 721–726 (2013). https://doi.org/10.1016/B978-0-444-63234-0.50121-4
  9. Macbeth A. J., Lin Zh., Goddard J. M. General method for emulsion polymerization to yield functional terpolymers. MethodsX, 7, 101110 (2020). https://doi.org/10.1016/j.mex.2020.101110
  10. Wang T., Shi S., Yang F., Zhou L. M., Kuroda S. Poly(methyl methacrylate)/polystyrene composite latex particles with a novel core/shell morphology. Journal of Materials Science, 45, 3392–3395 (2010). https://doi.org/10.1007/s10853-010-4449-9
  11. Fan X., Jia X., Zhang H., Zhang B., Li Ch., Zhang Q. Synthesis of Raspberry-Like Poly(styrene–glycidyl methacrylate) Particles via a one-step soap-free emulsion polymerization process accompanied by phase separation. Langmuir, 29, 11730– 11741 (2013). https://doi.org/10.1021/la402759w
  12. Sudol E. D., El-Aasser M. S., Vanderhoff J. W. Kinetics of successive seeding of monodisperse polystyrene latexes. I. Initiation via potassium persulfate. Journal of Polymer Science, Part A: Polymer Chemistry, 24, 3499–3513 (1986). https://doi.org/10.1002/pola.1986.080241230
  13. Vanderhoff J. W., Vitkuske J. F., Bradford E. B., Alfrey Jr. T. Some factors involved in the preparation of uniform particle size latexes. Journal of Polymer Science, 20, 225–234 (1956). https://doi.org/10.1002.pol.1956.120209501
  14. Thomson B., Rudin A., Lajoie G. Dispersion copolymerization of styrene and divinylbenzene: Synthesis of monodisperse, uniformly crosslinked particles. Journal of Polymer Science, Part A: Polymer Chemistry, 33, 345–357 (1995). https://doi.org/10.1002/pola.1995.080330301
  15. Qi H., Hao W., Xu H. et al. Synthesis of large-sized monodisperse polystyrene microspheres by dispersion polymerization with dropwise monomer feeding procedure. Colloid and Polymer Science, 287, 243–248 (2009). https://doi.org/10.1007/s00396-008-1979-7
  16. Аверкин Д. В. Синтез мер размера частиц на основе водных суспензий полистирольных латексных сфер. Измерительная техника, (12), 64–68 (2022). https://doi.org/10.32446/0368-1025it.2022-12-64-68
  17. Аверкин Д. В. Влияние поверхностно-активных веществ на степень полидисперсности суспензий полистирольных латексных сфер. Измерительная техника, 73(3), 55–60 (2024). https://doi.org/10.32446/0368-1025it.2024-3-55-60
  18. Балаханов М. В., Добровольский В. И., Балаханов Д. М., Беленький Д. И. Совершенствование Государственного первичного эталона единиц дисперсных параметров аэрозолей, взвесей и порошкообразных материалов ГЭТ 163-2010. Измерительная техника, (12), 3–7 (2018). https://doi.org/10.32446/0368-1025it.2018-12-3-7

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).