Experimental verification of space radiotechnical methods for measuring the parameters of the Earth's gravitational field.

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of two radiotechnical experiments on measuring the parameters of the Earth's gravitational field using signals from low-orbit spacecraft and global navigation satellite systems are presented. The authors' previously proposed method of measuring the acceleration of gravity using signals from a low-orbit satellite, as well as the method of measuring  the current height of the geoid based on an onboard bistatic radar system, are experimentally verified. In the first experiment, a signal from the low-orbit small spacecraft RS-44 (DOSAAF-85) with a frequency of about 2.3 GHz was used, in the second experiment primary measurement data from a bistatic radar system installed on board a foreign satellite CYGNSS. As a result of processing the measurement results obtained in the first experiment, a difference was established between the measured and model values of the gravitational acceleration of the low-orbit spacecraft with a standard deviation of 6.3 mGal. Currently, gravity acceleration measurements based on mechanical gravimeters on board a satellite are impossible due to weightlessness. In the second experiment, the measured and model values of the geoid height profile differ from each other by 13.3 cm, which meets modern requirements. The method of measuring the current geoid height based on an onboard bistatic radar system, unlike the classical method of satellite radio altimetry, allows for up to 60 reflected signals and measured heights simultaneously. The experimental results can be used to refine the model of the Earth's gravity field in remote territories and water areas, including the Arctic region.

About the authors

R. A. Davlatov

Russian Metrological Institute of Technical Physics and Radio Engineering

Email: davlatov@vniiftri.ru
ORCID iD: 0000-0002-7520-0256

V. F. Fateev

Russian Metrological Institute of Technical Physics and Radio Engineering

Email: generalfat@mail.ru
ORCID iD: 0000-0001-7902-0212

V. P. Lopatin

Russian Metrological Institute of Technical Physics and Radio Engineering

Email: gagaringiga@gmail.com
ORCID iD: 0000-0001-7591-8877

References

  1. Денисенко О. В., Пустовойт В. И., Сильвестров И. С., Фатеев В. Ф. Проблемы развития бесшовной ассистирующей технологии навигации в ГНСС ГЛОНАСС на основе измерений параметров геофизических полей. Альманах современной метрологии, (4(24)), 127–160 (2020). https://www.elibrary.ru/quqoji
  2. Фатеев В. Ф., Денисенко О. В., Федотов В. Н., Сильвестров И. С., Давлатов Р. А. Способ измерения гравитаци онного ускорения космического аппарата: пат. RU 2768557 С1. Изобретения. Полезные модели. № 9 (2022). https://www.elibrary.ru/gxppke
  3. Клюев Н. Ф., Фатеев В. Ф., Ильин А. Л., Бырков И. А., Сахно И. В. Принцип построения двухпозиционных РСА космического базирования. Материалы военно-научной конференции «А. Ф. Можайский: к 170-летию со дня рождения создателя первого российского самолета». 21–23 марта 1995. Т. 2. С. 335–338. Военная инженерная Краснознаменная космическая академия (ВИККА), Санкт-Петербург (1996).
  4. Lowe S. T., LaBrecque J. L., Zuffada C., Romans L. J., Young L. E., Hajj G. A. First spaceborne observation of an Earth reflected GPS signal. Radio Science, 37(1), 1–28 (2002). https://doi.org/10.1029/2000RS002539
  5. Gleason S., Hodgart S., Sun Y., Gommenginger C., Mackin S., Adjrad M. Detection and Processing of bistatically reflected GPS signals from low Earth orbit for the purpose of ocean remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 43(6), 1229–1241 (2005). http://doi.org/10.1109/TGRS.2005.845643
  6. Unwin M., Jales P., Tye J., Gommenginger Ch., Foti G., Rosello J. Spaceborne GNSS-Reflectometry on TechDemo Sat-1: Early mission operations and exploitation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(10), 4525–4539 (2016). http://doi.org/10.1109/JSTARS.2016.2603846
  7. Ruf C. S., Atlas R., Chang P. S. et al. New ocean winds satellite mission to probe hurricanes and tropical convection. Bulletin of the American Meteorological Society, 97(3), 385–395 (2016). https://doi.org/10.1175/BAMS-D-14-00218.1
  8. Jing C., Niu X., Duan C., Lu F., Di G., Yang X. Sea surface wind speed retrieval from the first Chinese GNSS-R Mission: Technique and preliminary results. Remote Sensing, 11(24), 3013–3026 (2019). http://doi.org/10.3390/rs11243013
  9. Xia J., Bai W., Sun Yu., Du Q., Huang F., Yin C. Calibration and wind speed retrieval for the Fengyun-3 E Meteorological Satellite GNSS-R Mission. IEEE Specialist Meeting on Reflectometry using GNSS and other Signals of Opportunity (GNSS+R), Beijing, China, 2021, pp. 25–28 (2021). http://doi.org/10.1109/GNSSR53802.2021.9617699
  10. Dielacher A., Fragner H., Koudelka O. PRETTY – passive GNSS-Reflectometry for CubeSats. e+i Elektrotechnik und Informationstechnik, 139(1), 25–32 (2022). https://doi.org/10.1007/s00502-022-00993-7

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).