Single molecules detection according to plasmon-enhanced photoluminescence in CeYTbF3 colloidal nanoparticles
- Autores: Izbasarova Е.А.1, Gazizov A.R.1
-
Afiliações:
- Kazan (Volga Region) Federal University
- Edição: Volume 88, Nº 12 (2024)
- Páginas: 1932-1939
- Seção: Nanooptics, photonics and coherent spectroscopy
- URL: https://journals.rcsi.science/0367-6765/article/view/286521
- DOI: https://doi.org/10.31857/S0367676524120143
- EDN: https://elibrary.ru/EWDAGO
- ID: 286521
Citar
Resumo
The interaction of luminescent nanoparticles with plasmonic nanoparticles changes their luminescence, which is associated with the appearance of Förster and Purcell effects. To enhance luminescence, it is important to reduce the effect of the Foerster effect. The finite difference method in the time domain made it possible to determine the conditions for the predominance of the Purcell effect and to develop a technique for analyzing the amplification of transitions, which increases the sensitivity of sensors based on fluorescent nanoparticles.
Texto integral

Sobre autores
Е. Izbasarova
Kazan (Volga Region) Federal University
Autor responsável pela correspondência
Email: Izbasarova.E.A@mail.ru
Институт физики
Rússia, KazanA. Gazizov
Kazan (Volga Region) Federal University
Email: Izbasarova.E.A@mail.ru
Институт физики
Rússia, KazanBibliografia
- Cohen L., Cui N., Cai Y. et al. // ACS Nano. 2020. V. 14. No. 8. P. 9491.
- Barik A., Otto L.M., Yoo D. et al. // Nano Lett. 2014. V. 14. No. 4. P. 2006.
- Избасарова Э.А., Газизов А.Р., Харинцев С.С. // Изв. РАН. Сер. физ. 2023. Т. 87. № 12. С. 1788, Izbasarova E.A., Gazizov A.R., Kharintsev S.S. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 12. P. 1862.
- Qin X., Xu J., Wu Y., Liu X. // ACS Cent. Sci. 2019. V. 5. P. 29.
- Chen G., Ohulchanskyy T.Y., Liu S. et al. // ACS Nano. 2012. V. 6. No. 4. P. 2969.
- Shah S.J., Li W., Tang Y. et al. // Appl. Catal. B. 2022. V. 315. Art. No. 121555.
- Жарков Д.К., Шмелев А.Г., Леонтьев А.В. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 12. С. 1746, Zharkov D.K., Shmelev A.G., Leontyev A.V. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 12. P. 1486.
- Mendez-Gonzalez D., Lopez-Cabarcos E., Rubio-Retama J., Laurenti M. // Adv. Colloid Interface Sci. 2017. V. 249. P. 66.
- Yang B., Chen H., Zheng Z., Li G. // J. Luminescence. 2020. V. 223. Art. No. 117226.
- Han Y., Noor M.O., Sedighi A. et al. // Langmuir. 2017. V. 33. No. 45. P. 12839.
- Mendez-Gonzalez D., Melle S., Calderón O.G. et al. // Nanoscale. 2019. V. 11. No. 29. P. 13832.
- Kushlyk M., Tsiumra V., Zhydachevsky Y. et al. // J. Alloys Compounds. 2019. V. 804. P. 202.
- Lu D., Cho S.K., Ahn S. et al. // ACS Nano. 2014. V. 8. No. 8. P. 7780.
- Sun Q.C., Mundoor H., Ribot J.C. et al. // ACS Nano. 2014. V. 14. No. 1. P. 101.
- Saboktakin M., Ye X., Chettiar U.K. et al. // ACS Nano. 2013. V. 7. No. 8. P. 7186.
- Greybush N.J., Saboktakin M., Ye X. et al. // ACS Nano. 2014. V. 8. No. 9. P. 9482.
- Yi G., Moon B.S., Wen X. et al. // J. Phys. Chem. C. 2018. V. 122. No. 24. P. 13047.
- Das A., Mao C., Cho S.et al. // Nature Commun. 2018. V. 9. No. 1. P. 4828.
- Zhang S.Z., Sun L.D., Tian H. et al. // Chem. Commun. 2009. No. 18. P. 2547.
- Wu Q., Long Q., Li H. et al. // Talanta. 2015. V. 136. P. 47.
- Li Z., Wang L., Wang Z. et al. // J. Phys. Chem. C. 2011. V. 115. No. 8. P. 3291.
- Seregina E.A., Seregin A.A., Tikhonov G.V. // Opt. Spectrosc. 2014. V. 116. No. 3. P. 438.
- Terra I.A., Borrero-González L.J., Almeida J.M. et al. // Quim. Nova. 2020. V. 43. P. 188.
- Ramble J.R. Handbook of chemistry and physics. CRC Press, 2021. 1550 p.
- https://www.chemsrc.com/en/cas/9002-98-6_658402.html
- Neese F. // Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012. V. 2. P. 73.
- Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. P. 3297.
- Becke A.D. // J. Chem. Phys. 1993. V. 98. P. 5648.
- Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. P. 785.
- Grimme S., Antony J., Ehrlich S. et al. // J. Chem. Phys. 2010. V. 132. No. 15. P. 154104.
- Grimme S., Ehrlich S., Goerigk L. // J. Comput. Chem. 2011. V. 32. P. 1456.
- Valueva S.V., Vylegzhanina M.E., Meleshko T.K. et al. // Russ. J. Appl. Chem. 2020. V. 93. P. 89.
- https://omlc.org/spectra/PhotochemCAD/html/084.html.
- Pudovkin M.S., Kalinichenko S.I., Nizamutdinov A.S. // Opt. Mater. 2024. V. 148. Art. No. 114831.
- Nizamutdinov A., Lukinova E., Shamsutdinov N. et al. // J. Compos. Sci. 2023. V. 7. P. 255.
- Khusainova A.I., Nizamutdinov A.S., Shamsutdinov N.I. et al. // Materials. 2024. V. 17. P. 316.
- Gazizov A.R., Salakhov M.Kh., Kharintsev S.S. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. Suppl. 1. P. S71.
- Газизов А.Р., Салахов М.Х., Харинцев С.С. // Письма в ЖЭТФ. 2023. Т. 117. № 9. C. 670, Gazizov A.R., Salakhov M. Kh., Kharintsev S.S. // JETP Lett. 2023. V. 117. No. 9. P. 668.
Arquivos suplementares
