Spin echo signal simulation of gaussian pulse protocol using phase cycling
- Authors: Khairutdinov I.T.1
-
Affiliations:
- Zavoisky Physical-Technical Institute, Federal Research Center Kazan Scientific Center, of the Russian Academy of Sciences
- Issue: Vol 89, No 10 (2025)
- Pages: 1623-1630
- Section: Physics of magnetic phenomena: fundamental and applied research using magnetic resonance methods
- URL: https://journals.rcsi.science/0367-6765/article/view/375827
- DOI: https://doi.org/10.7868/S3034646025100146
- ID: 375827
Cite item
Abstract
The Carr–Purcell–Meiboom–Gill pulse sequence is widely used in magnetic resonance to measure the spin-spin relaxation time T2. The time T2 is a characteristic decay time of the refocused spin echo signals. Ideally, the refocusing pulses of this sequence should invert all the spins of the spectrum, i.e. have a rotation angle of 180°. This condition is met in NMR experiments, since the pulse amplitude in them is much larger than the spectrum width in magnetic field units. In the case of pulsed EPR, it is usually impossible to effectively invert all the spins of the spectrum by the refocusing pulse. In this situation, at the moments of echo observation, other signals appear that depend not only on the time T2, but also on the spin-lattice relaxation time T1. In this paper, numerical calculations of the echo signal amplitudes in the Carr–Purcell–Meiboom–Gill sequence with a Gaussian pulse shape are performed. Phase cycling of the sequence is proposed to isolate the refocused echo signals.
Keywords
About the authors
I. T. Khairutdinov
Zavoisky Physical-Technical Institute, Federal Research Center Kazan Scientific Center, of the Russian Academy of Sciences
Email: semak-olic@mail.ru
Kazan, Russia
References
- DiVincenzo D.P. // Progr. Phys. 2000. V. 48. P. 771.
- Herbschleb E.D., Kato H., Maruyama Y. et al. // Nature Commun. 2019. V. 10. Art. No. 3766.
- Bader K., Winkler M., and van Slageren J. // Chem. Commun. 2016. V. 52. P. 3623.
- Yu C.-J., Graham M.J., Zadrozny J.M. et al. // J. Amer. Chem. Soc. 2016. V. 138. P. 14678.
- Gerasimov K.I., Moiseev S.A., and Zaripov R.B. // Appl. Magn. Reson. 2017. V. 48. P. 795.
- Gerasimov K.I., Moiseev S.A., Morosov V.I., and Zaripov R.B. // Phys. Rev. A. 2014. V. 90. Art. No. 042306.
- Hahn E.L. // Phys. Rev. 1950. V. 80. P. 580.
- Bloch F. // Phys. Rev. 1946. V. 70. P. 460.
- Салихов К.М., Семенов А.Г., Цветков Ю.Д. Электронное спиновое эхо и его применение. Новосибирск: Наука, 1976.
- Abragam A. The Principles of Nuclear Magnetism. Clarendon, Oxford, 1961.
- Schweiger A., Jeschke G. Principles of Pulse Electron Paramagnetic Resonance. N.Y.: Oxford Univ. Press, 2006.
- Slesareva Yu., Vavilova E.L., Kandrashkin Yu.E., and Zaripov R.B. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. P. 1082.
- Миннегалиев M.M., Урманчеев Р.В., Скребнев В.А., Моисеев С.А. // Опт. и спектроск. 2019. T. 126. C. 9.
- Babunts R.A., Uspenskaya Yu.A., Bundakova A.P. et al. // JETP Lett. 2022. V. 116. No. 11. P. 785.
- Kulagina T.P., Karnaukh G.E., and Golubeva I.Yu. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. P. 894.
- Song Y.-Q. // J. Magn. Reson. 2002. V. 157. P. 82.
- Kurshev V.V., Ratisimring A.M. // J. Magn. Reson. 1990. V. 88. P. 126.
- Carr H.Y., Purcell E.M. // Phys. Rev. 1954. V. 94. P. 630.
- Meiboom S., Gill D. // Rev. Sci. Instrum. 1958. V. 29. P. 688.
- Lukzen N.N., Savelov A.A. // J. Magn. Reson. 2007. V. 185. P. 20.
- Lukzen N.N., Petrova M.V., Koptyug I.V. et al. // J. Magn. Reson. 2009. V. 196. P. 164.
- Lukzen N.N., Petrova M.V., and Doktorov A.B. // J. Magn. Reson. 2011. V. 212. P. 330.
- Stoll S., Kasumaj B. // Appl. Magn. Reson. 2008. V. 35. P. 15.
Supplementary files


