Anisotropic spin models for iridium oxides: justification in the cluster quantum chemical approach

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For various crystal structures of magnetic iridium oxides, a quantum-chemical cluster method has been developed for quantitative justification of effective spin models, including the Heisenberg compass model on a square lattice and the Kitaev model on a hexagonal lattice, previously proposed on a phenomenological basis and currently being intensively discussed.

About the authors

L. A. Siurakshina

Meshcheryakov Laboratory of Information Technologies, Joint Institute for Nuclear Research

Email: siuraksh@jinr.ru
Dubna, Russia

V. Yu. Yushankhai

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research; Dubna State University

Dubna, Russia; Dubna, Russia

References

  1. Witczak-Krempa W., Chen G., Kim Y.B., and Balents L. // Annu. Rev. Cond. Matter Phys. 2014. V. 5. P. 57.
  2. Kuzmin V.I., Korshunov M.M., Nikolaev S.V. et al. // JETP Lett. 2024. V. 120. No. 1. P. 46.
  3. Orlov Yu.S., Nikolaev S.V., and Ovchinnikov S.G. // JETP Lett. 2023. V. 117. No. 9. P. 708.
  4. Ikhlin V.Yu. // JETP Lett. 2023. V. 117. No. 1. P. 48.
  5. Aharonry A., Entin-Wohlman O., and Harris A.B. Low dimensional quantum magnetism in the copper oxides. Kluwer Acad. Publishers, 1998. 281 p.
  6. Kim B.J., Hosub Jin, Moon S.J. et al. // Phys. Rev. Lett. 2008. V. 101. Art. No. 076402.
  7. Sugano S., Tanabe Y., and Kamimura H. Multiplets of Transition-Metal Ions in Crystals. London: Academic Press, 1970. 348 p.
  8. Abragam A., Bleaney B. Electron Paramagnetic Resonance of Transition Ions. Oxford: Clarendon Press, 1970. 726 p.
  9. Hirata Y., Ohgushi K., Yamaura J.-I. et al. // Phys. Rev. B. 2013. V. 87. Art. No. 161111.
  10. Helgaker T., Jorgensen P., and Olsen J. // Molecular Electronic-Structure Theory. Chichester: Wiley, 2000. 938 p.
  11. Xu L., Yadav R., Yushankhai V. et al. // Phys. Rev. B. 2019. V. 99. Art. No. 115119.
  12. Katukuri V.M., Yushankhai V., Siurakshina L. et al. // Phys. Rev. X. 2014. V. 4. Art. No. 021051.
  13. Boseggia S., Springell R., Walker H.C. et al. // Phys. Rev. Lett. 2013. V. 110. Art. No. 117207.
  14. Kitaev A.Y. // Ann. Phys. (New York). 2006. V. 321. P. 2.
  15. Jackeli G., Khaliullin G. // Phys. Rev. Lett. 2009. V. 102. Art. No. 017205.
  16. Katukuri V., Nishimoto S., Yushankhai V. et al. // New J. Phys. 2014. V. 16. Art. No. 013056.
  17. Chaloupka J., Jackeli G., and Khaliullin G. // Phys. Rev. Lett. 2013. V. 110. Art. No. 097204.
  18. Yanaji Y., Nomura Y., Kurii M. et al. // Phys. Rev. Lett. 2014. V. 113. Art. No. 107201.
  19. Winter S.M., Li Y., Jeschke H.O., Valenti R. // Phys. Rev. B. 2016. V. 93. Art. No. 214431.
  20. Winter S.M., Tsirlin A.A., Daghofer M. et al. // J. Phys. Cond. Matter. 2017. V. 29. Art. No. 493002.
  21. Choi S.K., Coldea R., Kolmogorov A.N. et al. // Phys. Rev. Lett. 2012. V. 108. Art. No. 127204.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).