Anisotropic spin models for iridium oxides: justification in the cluster quantum chemical approach
- Authors: Siurakshina L.A.1, Yushankhai V.Y.2,3
-
Affiliations:
- Meshcheryakov Laboratory of Information Technologies, Joint Institute for Nuclear Research
- Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research
- Dubna State University
- Issue: Vol 89, No 10 (2025)
- Pages: 1616-1622
- Section: Physics of magnetic phenomena: fundamental and applied research using magnetic resonance methods
- URL: https://journals.rcsi.science/0367-6765/article/view/375826
- DOI: https://doi.org/10.7868/S3034646025100131
- ID: 375826
Cite item
Abstract
For various crystal structures of magnetic iridium oxides, a quantum-chemical cluster method has been developed for quantitative justification of effective spin models, including the Heisenberg compass model on a square lattice and the Kitaev model on a hexagonal lattice, previously proposed on a phenomenological basis and currently being intensively discussed.
About the authors
L. A. Siurakshina
Meshcheryakov Laboratory of Information Technologies, Joint Institute for Nuclear Research
Email: siuraksh@jinr.ru
Dubna, Russia
V. Yu. Yushankhai
Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research; Dubna State UniversityDubna, Russia; Dubna, Russia
References
- Witczak-Krempa W., Chen G., Kim Y.B., and Balents L. // Annu. Rev. Cond. Matter Phys. 2014. V. 5. P. 57.
- Kuzmin V.I., Korshunov M.M., Nikolaev S.V. et al. // JETP Lett. 2024. V. 120. No. 1. P. 46.
- Orlov Yu.S., Nikolaev S.V., and Ovchinnikov S.G. // JETP Lett. 2023. V. 117. No. 9. P. 708.
- Ikhlin V.Yu. // JETP Lett. 2023. V. 117. No. 1. P. 48.
- Aharonry A., Entin-Wohlman O., and Harris A.B. Low dimensional quantum magnetism in the copper oxides. Kluwer Acad. Publishers, 1998. 281 p.
- Kim B.J., Hosub Jin, Moon S.J. et al. // Phys. Rev. Lett. 2008. V. 101. Art. No. 076402.
- Sugano S., Tanabe Y., and Kamimura H. Multiplets of Transition-Metal Ions in Crystals. London: Academic Press, 1970. 348 p.
- Abragam A., Bleaney B. Electron Paramagnetic Resonance of Transition Ions. Oxford: Clarendon Press, 1970. 726 p.
- Hirata Y., Ohgushi K., Yamaura J.-I. et al. // Phys. Rev. B. 2013. V. 87. Art. No. 161111.
- Helgaker T., Jorgensen P., and Olsen J. // Molecular Electronic-Structure Theory. Chichester: Wiley, 2000. 938 p.
- Xu L., Yadav R., Yushankhai V. et al. // Phys. Rev. B. 2019. V. 99. Art. No. 115119.
- Katukuri V.M., Yushankhai V., Siurakshina L. et al. // Phys. Rev. X. 2014. V. 4. Art. No. 021051.
- Boseggia S., Springell R., Walker H.C. et al. // Phys. Rev. Lett. 2013. V. 110. Art. No. 117207.
- Kitaev A.Y. // Ann. Phys. (New York). 2006. V. 321. P. 2.
- Jackeli G., Khaliullin G. // Phys. Rev. Lett. 2009. V. 102. Art. No. 017205.
- Katukuri V., Nishimoto S., Yushankhai V. et al. // New J. Phys. 2014. V. 16. Art. No. 013056.
- Chaloupka J., Jackeli G., and Khaliullin G. // Phys. Rev. Lett. 2013. V. 110. Art. No. 097204.
- Yanaji Y., Nomura Y., Kurii M. et al. // Phys. Rev. Lett. 2014. V. 113. Art. No. 107201.
- Winter S.M., Li Y., Jeschke H.O., Valenti R. // Phys. Rev. B. 2016. V. 93. Art. No. 214431.
- Winter S.M., Tsirlin A.A., Daghofer M. et al. // J. Phys. Cond. Matter. 2017. V. 29. Art. No. 493002.
- Choi S.K., Coldea R., Kolmogorov A.N. et al. // Phys. Rev. Lett. 2012. V. 108. Art. No. 127204.
Supplementary files


