Planar relativistic subterahertz surface-wave oscillators based on two-dimensional periodic slow-wave structures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using the theoretical analysis and three-dimensional PIC modeling, a project of a planar relativistic G-band surface-wave oscillator was developed based on the SINUKI high-current accelerator (IAP RAS, Nizhny Novgorod, 1 kA / 600 keV / 17 ns), powered by a sheet electron beam. The electrodynamic system of the oscillator is based on a two-dimensional periodic slow-wave structure implementing a two-dimensional distributed feedback mechanism and providing mode selection in three spatial coordinates. The conducted simulation shows the possibility of obtaining stable single-mode oscillation regime in the specified scheme with an efficiency of ~ 8%. The experiment demonstrated a stable single-mode regime at a frequency of 160 GHz with a pulse duration of up to 5 ns and an output power of ~ 30 MW.

About the authors

V. Yu Zaslavsky

A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: zas-vladislav@ipfran.ru
Nizhny Novgorod, Russia

A. V Palitsin

A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Nizhny Novgorod, Russia

Yu. V Rodin

A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Nizhny Novgorod, Russia

N. Yu Peskov

A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Nizhny Novgorod, Russia

A. V Gromov

A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Nizhny Novgorod, Russia

M. B Goykhman

A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Nizhny Novgorod, Russia

D. R Gulyovsky

A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Nizhny Novgorod, Russia

A. N Panin

A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Nizhny Novgorod, Russia

References

  1. Бугаев С.П., Канавец В.И., Кошелев В.И., Черепенин В.А. Релятивистские многоволновые СВЧ-генераторы. Новосибирск: Наука. Сиб. отд., 1991. 296 с.
  2. Бугаев С.П., Канавец В.И., Климов А.И. и др. // ДАН СССР. 1984. Т. 276.№5. С. 1102.
  3. Бугаев С.П., Канавец В.И., Кошелев В.И. и др. // Радиотехн. и электрон.1989. Т. 34.№2. С. 400.
  4. Vlasov A.N., Shkvarunets A.G., Rodgers J.S. et al. // IEEE Trans. Plasma Sci. 2000. V. 28. P. 235.
  5. Bugaev S.P., Cherepenin V.A., Kanavets V.I. et al. // IEEE Trans. Plasma Sci. 1990. V. 18. P. 525.
  6. Быстров Р.П., Корниенко В.Н., Черепенин В.А. // Изв. РАН. Сер. физ. 2020. T. 84. № 2. С. 247
  7. Bystrov R.P., Kornienko V.N., Cherepenin V.A. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 2. P. 193.
  8. Bratman V.L., Denisov G.G., Ofitserov M.M. et al. // IEEE Trans. Plasma Sci. 1987. V. 15. P. 2.
  9. Palitsin A.V., Rodin Yu.V., Goykhman M.B. et al. // IEEE Electron Device Lett. 2023. V. 44. No. 2. P. 317.
  10. Zaslavsky V.Yu., Palitsin A.V., Rodin Yu.V. et al. // Phys. Plasmas. 2023. V. 30. Art. No. 043110.
  11. Ginzburg N.S., Malkin A.M., Sergeev A.S., Zaslavsky V.Yu. // Appl. Phys. Lett. 2012. V. 100. No. 14. Art. No. 143510.
  12. Ginzburg N.S., Malkin A.M., Sergeev A.S., Zaslavsky V.Yu. // Phys. Plasmas. 2013. V. 20. Art. No. 113104.
  13. https://www.3ds.com/products-services/simulia/products/cst-studio-suite

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).