Analysis of the possibility of increasing the degree of randomness of noise using a continuous wavelet transform on the example of a sequence of numbers generated by an optical random noise generator
- Authors: Sibgatullin M.E.1,2, Mavkov D.A.1, Gilyazov L.R.1, Arslanov N.M.1
-
Affiliations:
- Kazan National Research Technical University
- Tatarstan Academy of Sciences
- Issue: Vol 88, No 12 (2024)
- Pages: 1951-1956
- Section: Nanooptics, photonics and coherent spectroscopy
- URL: https://journals.rcsi.science/0367-6765/article/view/286545
- DOI: https://doi.org/10.31857/S0367676524120174
- EDN: https://elibrary.ru/EVKPBO
- ID: 286545
Cite item
Abstract
The possibilities of controlling the parameters of random number sequences using a continuous wavelet transform are investigated. It is shown that changing the energy of the scales of the continuous wavelet transform can increase the percentage of passing the NIST LongestRun, FFT and Runs tests. The possibility of increasing the percentage of passing tests has been demonstrated for various sizes of the experimental sequence of random numbers under study.
Full Text

About the authors
M. E. Sibgatullin
Kazan National Research Technical University; Tatarstan Academy of Sciences
Author for correspondence.
Email: sibmans@mail.ru
Kazan Quantum Centre
Russian Federation, Kazan; KazanD. A. Mavkov
Kazan National Research Technical University
Email: sibmans@mail.ru
Kazan Quantum Centre
Russian Federation, KazanL. R. Gilyazov
Kazan National Research Technical University
Email: sibmans@mail.ru
Kazan Quantum Centre
Russian Federation, KazanN. M. Arslanov
Kazan National Research Technical University
Email: sibmans@mail.ru
Kazan Quantum Centre
Russian Federation, KazanReferences
- Herrero-Collantes M., Garcia-Escartin J.C. // Rev. Modern Phys. 2017. V. 89. No. 1. Art. No. 015004.
- Mannalatha V., Mishra S., Pathak A. // Quantum Inf. Process. 2023. V. 22. Art. No. 439.
- Kim T., Lee S., Yun S. et al. // Proc. 23rd Int. Conf. WISA 2022 (Jeju Island, 2022). P. 277.
- Petrie C.S., Connelly J.A. // IEEE TCAS-I. 2000. V. 47. No. 5. P. 615.
- Katsoprinakis G., Polis M., Tavernarakis A. et al. // Phys. Rev. A. 2008. V. 77. Art. No. 054101.
- Argillander J., Alarcón A., Xavier G. // J. Optics. 2022. V. 24. Art. No. 064010.
- Khanmohammadi A., Enne R., Hofbauer M. et al. // IEEE Photonics J. 2015. V. 7. No. 5. P. 1.
- Grosshans F., Van Assche G., Wenger J. et al. // Nature. 2003. V. 421. P. 238.
- Symul T., Assad S.M., Lam P.K. // Appl. Phys. Lett. 2011. V. 98. Art. No. 231103.
- Балыгин К.А., Кулик С.П., Молотков С.Н. // Письма в ЖЭТФ. 2024. Т. 119. № 7. С. 533, Balygin K.A., Kulik S.P., Molotkov S.N. // JETP Lett. 2024. V. 119. No. 7. P. 538.
- Bikos A., Nastou P., Petroudis G., Stamatiou Y. // Criptography. 2023. V. 7. No. 4. P. 54.
- Сибгатуллин М.Э., Гилязов Л.Р., Мавков Д.А., Арсланов Н.М. // Изв. РАН. Сер. физ. 2023. Т. 87. № 12. С. 1796, Sibgatullin M.E., Gilyazov L.R., Mavkov D.A., Arslanov N.M. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 12. P. 1869.
- Strydom C., Soleymani S., Özdemir Ş.K., Tame M.S. // New J. Phys. 2024. No. 26. Art. No. 043002.
- Евстифеев Е.В., Москаленко О.И. // Изв. РАН. Сер. физ. 2020. Т. 84. № 2. С. 300, Evstifeev E.V., Moskalenko O.I .// Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 2. P. 230.
- Захаров В.М., Шалагин С.В., Гумиров А.И. // Вест. Дагестан. гос. ун-та. Сер. 1. Естеств. науки. 2023. Т. 38. № 3. С. 28.
- Obadi A.B., Zeghid M., Kan P.L.E. // EEE Access. 2022. V. 10. P. 126767.
Supplementary files
