Analysis of Schmidt modes of ultra-broadband biphotons generated in a photonic crystal fiber
- Authors: Smirnov M.А.1, Smirnova A.М.1, Khairullin A.F.1, Ermishev O.А.1, Moiseev S.A.1
-
Affiliations:
- Kazan National Research Technical University
- Issue: Vol 88, No 12 (2024)
- Pages: 1946-1950
- Section: Nanooptics, photonics and coherent spectroscopy
- URL: https://journals.rcsi.science/0367-6765/article/view/286540
- DOI: https://doi.org/10.31857/S0367676524120165
- EDN: https://elibrary.ru/EVKVAO
- ID: 286540
Cite item
Abstract
We presented numerical estimates of the degree of quantum entanglement based on Schmidt mode analysis for ultra-broadband biphotonic states generated in a photonic crystal fiber. We show that these states have a high degree of quantum entanglement even when the source is pumped broadband by femtosecond laser pulses.
Full Text

About the authors
M. А. Smirnov
Kazan National Research Technical University
Author for correspondence.
Email: maxim@kazanqc.org
Kazan Quantum Center
Russian Federation, KazanA. М. Smirnova
Kazan National Research Technical University
Email: maxim@kazanqc.org
Kazan Quantum Center
Russian Federation, KazanA. F. Khairullin
Kazan National Research Technical University
Email: maxim@kazanqc.org
Kazan Quantum Center
Russian Federation, KazanO. А. Ermishev
Kazan National Research Technical University
Email: maxim@kazanqc.org
Kazan Quantum Center
Russian Federation, KazanS. A. Moiseev
Kazan National Research Technical University
Email: maxim@kazanqc.org
Kazan Quantum Center
Russian Federation, KazanReferences
- Клышко Д.Н. // УФН. 1989. Т. 158. № 6. С. 327, Klyshko D.N. // Sov. Phys. Usp. 1989. V. 32. P. 555.
- Moreau P.-A., Tonelli E., Gregori T., Padgett M.J. // Nature Rev. Phys. 2019. V. 1. No. 6. P. 367.
- Vallés A., Jimenez G., Salazar-Serrano L.J., Torres J.P. // Phys. Rev. A. 2018. V. 97. No. 2. Art. No. 023824.
- Schlawin F., Dorfman K.E., Mukamel S. // Acc. Chem. Res. 2018. V. 51. No. 9. P. 2207.
- Бантыш Б.И., Катамадзе К.Г., Богданов Ю.И. и др. // Письма в ЖЭТФ. 2022. Т. 116. № 1—2 (7). С. 33, Bantysh B.I., Katamadze K.G., Bogdanov Yu.I. et al. // JETP Lett. 2022. V. 116. No. 1. P. 29.
- Миннегалиев М.М., Герасимов К.И., Моисеев С.А. // Письма в ЖЭТФ. 2023. Т. 117. № 11. С. 867, Minnegaliev M.M., Gerasimov K.I., Moiseev S.A. // JETP Lett. 2023. V. 117. No. 11. P. 865.
- Melnik K.S., Moiseev E.S. // Phys. Rev. A. 2023. V. 107. No. 5. Art. No. 052607.
- Федоров А.К., Киктенко Е.О., Хабарова К.Ю., Колачевский Н.Н. // УФН. 2023. Т. 193. № . 11. С. 1162, Fedorov A.K., Kiktenko E.O., Khabarova K.Yu., Kolachevsky N.N. // Phys. Usp. 2023. V. 66. No. 11. P. 1095.
- Cozzolino D., da Lio B., Bacco D., Oxenlowe L.K. // Adv. Quantum Technol. 2019. V. 2. No. 12. Art. No. 1900038.
- Erhard M., Krenn M., Zeilinger A. // Natute Rev. Phys. 2020. V. 2. No. 7. P. 365.
- Bechmann-Pasquinucci H., Peres A. // Phys. Rev. Lett. 2000. V. 85. No. 15. P. 3313.
- Couteau C., Barz S., Durt T. et al. // Nature. Rev. Phys. 2023. V. 5. No. 6. P. 326.
- Катамадзе К.Г., Пащенко А.В., Романова А.В., Кулик С.П. // Письма в ЖЭТФ. 2022. Т. 115. № 10. С. 613, Katamadze K.G., Pashchenko A.V., Romanova A.V., Kulik S.P. // JETP Lett. 2022. V. 115. No. 10. P. 581.
- Petrovnin K.V., Smirnov M.A., Fedotov I.V. et al. // Laser Phys. Lett. 2019. V. 16. No. 7. Art. No. 075401.
- Хайруллин А.Ф., Смирнова А.М., Арсланов Н.М. и др. // Письма в ЖЭТФ. 2024. Т. 119. № 5. С. 336, Khairullin A.F., Smirnova A.M., Arslanov N.M. et al. // JETP Lett. 2024. V. 119. No. 5. P. 345.
- Hammer J., Chekhova M.V., Häupl D.R. et al. // Phys. Rev. Res. 2020. V. 2. No. 1. P. 012079.
- Smirnov M.A., Petrovnin K.V., Fedotov I.V. et al. // Laser Phys. Lett. 2019. V. 16. No. 11. Art. No. 115402.
- Garay-Palmett K., Kim D.V., Zhang Y. et al. // JOSA B. 2023. V. 40. No. 3. P. 469.
- Ермишев О.А., Смирнов М.А., Хайруллин А.Ф., Арсланов Н.М.// Изв. РАН. Сер. физ. 2022. Т. 86. № 12. С. 1764, Ermishev O.A., Smirnov M.A., Khairullin A.F., Arslanov N.M. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 12. P. 1502.
- Lopez-Huidobro S., Lippl M., Joly N.Y., Chekhova M.V. // Opt. Letters. 2021. V. 46. No. 16. P. 4033.
- Smirnov M.A., Fedotov I.V., Smirnova A.M. et al. // Opt. Letters. 2024. V. 49. No. 14. P. 3838.
- Агравал Г. Нелинейная волоконная оптика. М.: Мир, 1996.
- Law C.K., Walmsley I.A., Eberly J.H. // Phys. Rev. Lett. 2000. V. 84. No. 23. P. 5304.
- Migdall A., Polyakov S.V., Fan J., Bienfang J.C. Single-photon generation and detection: physics and applications. Experimental Methods in the Physical Sciences. V. 45. Acad. Press, 2013. 616 p.
- Желтиков А.М., Скалли М.О. // УФН. 2020. Т. 190. № 7. С. 749, Zheltikov A.M., Scully M.O. // Phys. Usp. 2020. V. 63. No. 7. P. 698.
- Petrov N.L., Voronin A.A., Fedotov A.B., Zheltikov A.M. // Phys. Rev. A. 2019. V. 100. No. 3. Art. No. 033837.
Supplementary files
